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This is a transcript of my intended talk at the GAP.6-workshop “Towards a New
Epistemology of Mathematics” (14-16 Sep 2006). Motto of the talk was to be
Otto Neurath’s dictum “Confidence cannot be intellectualized” (1921).

1 Introduction

The point of departure is the contrast between the received view in the philoso-
phy of mathematics, as the study of logico-mathematical questions of a founda-
tional nature, and what Aspray and Kitcher have at a point called a maverick
tradition, arising the last few decades, where the focus is rather on mathematical
practice, i.e., on mathematics as a research activity, as a human affair important
aspects of which are also to be found outside the realm of published results and
their formal justification.

Quite rightfully, this contrast is called into attention now and then. A few
years ago, David Corfield did so, introducing the concept of ‘foundational filter’
in the philosophy of mathematics, in his book Towards a Philosophy of Real
Mathematics (CUP, 2003). Most recently the historians of mathematics José
Ferreiros and Jeremy Gray did so, in the commendable introduction to their
reader The architecture of modern mathematics (OUP, 2006).

Let us approach this matter by asking ourselves ‘what kind of man or woman
is a mathematician’?

Observation: The major schools in the philosophy of mathematics, especially
during the past century, have typically associated themselves with a particular
type of (either godlike or human) ideal mathematician.

E.g.

Platonists (methodological or not): someone with perfect intuition of the math-
ematical realm.

Empiricists: the ultimate scientist, studying the very essence of existence within
spacetime.



Logicists: a fully rational agent.
Formalists and conventionalists: an entirely free agent.

In general:

Ideal mathematicians are usually assumed to be infallible, eternal or
atemporal, unlimited in memory or complexity, isolated from other
mathematicians, mental beings without contexts. [...] In so far
as actual mathematicians err, they fail to approximate ideal math-
ematicians and so are of no concern to philosophy. (Thomas Ty-
moczko, 1986)

Contrary to this, mathematical humanists are prepared to grant a considerable,
if not central, role to actual mathematicians. That is: human beings inherently
‘cursed’ with loads of personal (ideosyncratic) and cultural (shared) traits that
inevitably turn them into contextually constrained instead of godlike epistemic
agents.

If the real mathematicians are actual people, rather than ideal constructions,
then philosophical reflection looses it a priori normative character, for in order
to properly evaluate, it must first feed itself with empirical material describing
the very practice it is about to judge. A form of epistemological naturalism
enters the picture here.

Another consequence for philosophical inquiry, if it is to concern itself with
mathematics as it is found, is the externalist move. This implies the view that:

The philosophy of mathematics is neither mathematics nor a subset
of mathematics. It is a field of study which reflects on mathematics
from the outside. (Paul Ernest, 1998)

So, the question is: What is the philosophy of mathematics, really? A question
that is central to the concerns of the PhiMSAMP-group the organizers of this
workshop are among the founding members of.

What I shall do from here, is look into the matter of the formal limits of real life
mathematics, that is look into a number of arguments as to the inevitability of
a minimally humanist philosophical course. The first part will remain general,
the second part will particularly deal with the social character of mathematical
inquiry (as you might have noticed an important topic of future inquiry within
the PhiMSAMP-network). In this respect, here, I particularly want to forward
a number of views on the concept of ‘scientific genius’.



2 Formal limits - The human mathematician

Following the lead of the naturalists, as we do, philosophers should not just
consider detached mathematical theory, but also —not only, but preferably in
the first place— mathematicians and what these actually do, which includes
theorizing only as one among many other things.

About ten years ago, the Canadian philosopher (and specialist in Category
Theory) Jean-Pierre Marquis has proposed what I think to be a very interesting
and useful sixfold subdivision of different ways in which to conceive of the notion
‘foundations of mathematics’. As only one (or at most a few) of these coincide
with the traditional conception, Marquis has sought to liberalize the notion in
question.

1) Logical foundations consist of a deductive system, including primitive con-
cepts, properties and inference rules, on the basis of which entire mathematical
theories might be (re)constructed.

2) Epistemological foundations delimit, usually according to some virtuous prop-
erty of ideal cognizers, what are acceptable pieces of mathematical knowledge
and how these should be arrived at.

3) Ontological foundations specify what are genuine mathematical objects and
their properties.

4) Semantical foundations provide with models interpreting the logical founda-
tions and linking these with the ontological ones (via reference relations).

5) Cognitive foundations, whether strongly or weakly interpreted, establish
the sufficient or necessary conditions for humans to successfully discover new
(heuristics) and/or get passed on existing mathematical knowledge (pedagogy).

6) Finally, methodological foundations lay out the principles and methods that
when used by mathematicians lead to legitimate constructions.

Contemplating the road to the foundational crisis, it should be clear that it
was through late nineteenth century intra-mathematical problems such as cop-
ing with non-Euclidean geometry or manifestations of the infinitely small, that
epistemological foundations became the most important topic of explicit philo-
sophical interest.

Despite the ensuing mathematical creativity and philosophical flexibility, the
worst was yet to come. By the early twentieth century, the paradoxes of set-
theory apparently led foundational theory into true impasse, and then, by the
1930s, Godel dismissed its very principle.

In the meantime however, starting with Frege, an irreversible process of formal-
ization had taken hold of philosophy of mathematics. Indeed in the hands of the
big post-Fregean schools then, past Godel, philosophical focus gradually shifted
to reductionist logical foundations.



From this period, although it actually became one of its highly specialized
branches, philosophy (aka foundations) of mathematics definitely got out of
touch with the rest, i.e., the bulk, of mathematics.

That is, after having been exposed as a dead end in principle, also in practice
did it more and more turn out a hopeless and pointless affair of trying to squeeze
all of ‘extraordinarily diverse’ mathematics into one single formal framework.

Mathematics consists of a great diversity of theories. There is, for
example, the theory of computability, the theory of games, the the-
ory of groups, the theory of probability and so on virtually endlessly.
It is very difficult to see how these could all be derived from the same
small initial set of mathematically unproblematic propositions. [...]
The enterprise of finding an intra-mathematical foundation for all
of mathematics is about as dead as any enterprise can be. (E.E.
Sleinis, 1983)

As a result of all this, when mathematicians are using the term ‘foundations’
today, they commonly do so in the methodological sense. More particularly, the
possibility of transferring particular tools between (sub)fields would be referred
to. Another, related sense often appealed to is that of (non-reductive) organiza-
tional power. While some of the foundational ways discerned by Marquis, such
as heuristics, might still be getting their complementary place under the sun, it
must be clear that at least logical foundations can be no issue at all here.

In the present circumstances, following Marquis, at least one supplementary
philosophical task other than the devising of proper foundations (of whatever
type) themselves can be readily pointed at, viz., the task of ordering all above
types according to their importance. The consequence will be that some of the
foundational ways to have high, and others low status, relative to one another.

For mathematical humanists, it is clear that any such exercise should put the
formal realm, their main target of critical scrutiny, in due perspective. To serve
this end, drawing upon the sociologist Erving Goffman (1922-1982), the ‘maver-
ick” mathematician Reuben Hersh has famously developed the analogy between
two distinct realms of mathematical activity and as many different regions in
restaurants or theatres. At this type of places, servants or actors alternately
find themselves ‘on stage’ and ‘backstage’, exercising different occupations and
—correspondingly— behaving differently.

Compared to ‘backstage’ mathematics, ‘front’ mathematics is for-
mal, precise, ordered and abstract. It is separated clearly into defini-
tions, theorems, and remarks. To every question there is an answer,
or at least, a conspicuous label: ‘open question’. The goal is stated
at the beginning of each chapter, and attained at the end. Com-
pared to ‘front’ mathematics, mathematics ‘in back’ is fragmentary,



informal, intuitive, tentative. We try this or that, we say ‘maybe’ or
‘it looks like’. (Reuben Hersh, 1991)

The purpose of this separation between front and back in mathematics, says
Hersh, “is not just to keep the customers from interfering with the cooking; it
is also to keep the customers from knowing too much about the cooking”.

An important consequence hereof is that what meets the eye is, strictly con-
ceived and to a certain extent, a myth, for it conceals the ‘ugly truth’ of the
back office. Concerning mathematical knowledge, the myth (a term also having
been used in this respect, if T am not mistaken, by Philip Kitcher), i.e. the
covering up of what is really going on, displays elements such as unity, objectiv-
ity, universality, certainty; elements to be found in all the ‘great’ philosophies
of the discipline, from Euclid to Bourbaki. So, whenever public presentation is
intended, these hallmarks are to be safeguarded come what may. Consequently,
the various philosophical schools have developed the specific styles they thought
would suit that end best.

The alternative picture is one of demystifying foundational scaffolds as being ex
post rather than ex ante constructions. The latter image aptly summarizes the
view of the mathematical naturalist, according to whom the ‘true’ foundations
of mathematics are found in the back, where, as noted above, frontstage myths
are not taken naively at all.

Now, in recent decades, there seems to have occurred a dramatic increase in (the
awareness of) the ‘informality’ of loads of mathematical results, provisional or
definitive, with a rising number of extremely long, complicated, digital, special-
ized, experimental or otherwise elusive proofs putting to the test the limits of
our human (mechanical or intuitive) mathematical powers.

There’s the powerful example of experimental mathematics (broadly conceived),
dealt with during this conference by Alan Baker. I'll cite a number of additional
cases in point further on. Philip J. Davis, in the late 1960’s indeed for himself
arrived at a rough sketch of the alternative picture that “mathematics, in some
of its aspects, takes on the nature of an experimental science”. According to
him, empiricizing ideas like these should in fact have gained momentum from
the late 1960s on, once computers had gradually become available as more or
less reliable assistants.

But, as Reuben Hersh noted only a few years ago, “mathematicians themselves
seldom discuss the philosophical issues surrounding mathematics; they assume
that someone else has taken care of this job. We leave it to the professionals”,
the latter of course supposing to be philosophers.

Looking back on an entire career in mathematics, in his memoirs, Davis con-
firms and specifies: “Most practicing mathematicians care very little about
discussing the philosophy of their subject, but they work unconsciously with a
philosophy of Platonism. [...] If the shortcomings of Platonism are pointed



out, mathematicians usually fall back on formalism”. With this he echoed the
following classic lines from his famous joint book with Hersh, The Mathematical
Experience (TME):

Most writers on the subject seem to agree that the typical working
mathematician is a Platonist on weekdays and a formalist on Sun-
days. That is, when he is doing mathematics he is convinced that he
is dealing with an objective reality whose properties he is attempt-
ing to determine. But then, when challenged to give a philosophical
account of this reality, he finds it easiest to pretend that he does not
believe in it after all”. (Davis and Hersh, 1983)

However, when it comes to challenging this careless and superfluous attitude, it
seems “the professional philosopher, with hardly any exception, has little to say
to the professional mathematician. Indeed, he has only a remote and inadequate
notion of what the professional mathematician is doing”.

This obvious neglect might be linked to the —philosophically unhealthy— preoc-
cupation, throughout the twentieth century, with shaken foundations, i.e., the
‘aftermath’ of the famous foundational crisis, which has been a matter of hardly
any immediate relevance to practicing mathematicians.

People noticed that in their normal everyday work as mathemati-
cians you don’t really find results that state that they themselves
are unprovable. And so mathematicians carried on their work as be-
fore, ignoring Godel. The places where you get into trouble seemed
too remote, too strange, too atypical to matter. (Gregory Chaitin,
1999)

Therefore, the mathematical humanist would claim with Yehuda Rav, that “it’s
important to remember that mathematics is not an edifice which risks collapse
unless it is seated on solid and eternal foundations that are supplied by some log-
ical, philosophical, or extra-mathematical construction”. This idea was magnif-
icently captured in the following legendary extract of contemporary philosophy
of mathematics, by the hand of the late Morris Kline:

The developments in this [twentieth] century bearing on the foun-
dations of mathematics are best summarized in a story. On the
banks of the Rhine, a beautiful castle has been standing for cen-
turies. In the cellar of the castle, an intricate network of webbing
had been constructed by industrious spiders who lived there. One
day a strong wind sprang up and destroyed the web. Frantically
the spiders worked to repair the damage. They thought it was their
webbing that was holding up the castle. (Morris Kline, 1980)



When Davis and Hersh wrote their aforementioned joint book, TME, the straight-
forward point of departure was the sheer confusion of mathematicians who de-

cide to lecture on the philosophy of their discipline, to realize they cannot even

begin to explicate their proper opinion about crucial matters like the nature of
numbers, sets or proofs.

More recently, Hersh has diagnozed this confusion quite aptly.

When you're a student, professors and books claim to prove things.
But they don’t know what’s meant by ‘prove’. You have to catch on.
Watch what the professor does, then do the same thing. Then you
become professor, and pass on the same ‘know-how’ without ‘know
what’ that your professor taught you. (Reuben Hersh, 1997)

The joint book TME subsequently reflected the quest, from within a mathe-
matician’s working reality, for answers to this type of questions, calling into
attention their importance.

In 1995 though, Hersh still judged it necessary to lament the absence, so far, in
the philosophy of mathematics, of inventive figures like Karl Popper, Thomas
Kuhn, Imre Lakatos or Paul Feyerabend. Philosophers, that is, who would
‘liberate” mathematics, in the way the ones mentioned, despite their dramatic
departures, had done for science in general: on the common assumption that
“philosophers of science could think about what scientists actually do, not bring
presuppositions and instructions for scientists to ignore”. This would arguably
break the deadlock between “philosophers of mathematics [who] ignore mathe-
matics and mathematicians, and mathematicians [who] find nothing of interest
in philosophy of mathematics”.

The suggestion, I guess, is to acknowledge that mathematical proofs do not
consist of or develop via deductive procedures alone. Indeed it could be argued
that formal proof does not exhaust the category of rigorous, i.e., mathematically
accepted, argument. We have already pointed to a number of inductive or
experimental methods applied in the course of both the process of discovery
and justification in mathematical practice. But this methodological type can be
further broadened, so as to include not ‘just’ the preparative or informal stages
on the road to formal proof, but also the ways these proofs get supplemented
or framed, in order for the intended audiences to grasp their content and judge
their quality.

William P. Thurston, when involving in a famous debate on the specificity of
mathematical inquiry, has addressed the matter of proof vs progress in math-
ematics. What exactly are they, what is their role in mathematical practice
and how do people relate to them? Questions like these are bound to take the
philosopher of mathematics way beyond the matter of whether a newly pro-
posed piece of mathematics, a proof, adds to the collection of established truths
or not. More particularly, it raises the issue of mathematical understanding,



and that of the conceptual dynamics facilitating it. As we have noted, the rise
of computer proof has brought this matter to the fore very strongly. If we really
want to get a grip on this topic, Thurston complains, then the traditional DTP
or Definition-Theorem-Proof-model of mathematical practice should be put to
the test, and some of its psychological and social dimensions should become the
object of consideration as well. Thurston illustrates this point by listing various
ways of ‘conceiving of’ the derivative of a function, and then distinguishes a
number of alternative but non-exclusive modes of mathematical thought con-
tributing to a grasp on mathematical units (propositions or proofs) in general,
among which the linguistic, visual, logical, and dynamical ones. At least one of
these modes seems to have a distinctively non-formal ring about it. As Thurston
notes:

People have amazing facilities for sensing something without know-
ing where it comes from (intuition); for sensing that some phe-
nomenon or situation or object is like something else (association);
and for building and testing connections and comparisons, holding
two things in mind at the same time (metaphor). These facilities
are quite important for mathematics. (William P. Thurston, 1994)

Rigorous but non-formal arguments often come in the format of proof-outlines:
sketches of the characteristic global shape of a proof, e.g., infinite descent, split-
ting in cases, or reductio (Van Bendegem, 2000). Unlike many of their formal
counterparts, these typically have the virtues of surveyability and robustness
(MacKenzie, 1998). The reason is simple: they are concise but powerful ways
of grasping the upshot or meaning of proofs, their overall structure being what
counts, not so much meticulous detail. Because of this, they facilitate the trans-
fer of particular proof techniques to other contexts, for example more general
ones; i.e., the association facility referred to by Thurston above.

3 Individual limits - The social mathematician
Retaking an earlier quote (and further concentrating on part of it),

Ideal mathematicians are usually assumed to be infallible, eternal or
atemporal, unlimited in memory or complexity, isolated from other
mathematicians, mental beings without contexts. [...] In so far
as actual mathematicians err, they fail to approximate ideal math-
ematicians and so are of no concern to philosophy. (Thomas Ty-
moczko, 1986)

However, contrary to this, Tymoczko continues, “it is the community of math-
ematicians, not a single isolated mathematician that is central to philosophical



concerns”. In order to make his case for mathematics as a public affair, against
individualist epistemology, Thomas Tymoczko has been particularly connecting
with both elements of cognitive foundations as discerned above by Marquis, viz.,
pedagogy and heuristics. The first facet touches upon the issue of the persis-
tence of the mathematical community through time, which constantly requires
new mathematicians to be initiated (from elementary to advanced levels).

From this simple observation, it appears that procedures for doing so will have
an important bearing on how the community’s continuity will take shape, which
is of significant philosophical relevance. For example, it seems that from an ed-
ucational point of view, a quite different selection of intra-mathematical foun-
dational theories is bound to be made, as instead of logic and/or set theory, one
would rather come up with algebra, geometry, calculus and computer science,
these unifying not abstract mathematical theories, but the basic mathematical
experience to be confronted by students and teachers. Also, the pedagogical per-
spective draws full attention to the context of discovery, which has been totally
left out of sight by traditional individualist epistemologies, for whom verification
and justification of the mathematical finished product is all that matters, as op-
posed to the road(s) towards it. Conversely, a perspective favourable to learning
processes could make room for embracing some of the ‘nasty’ properties of math-
ematical practice, such as error. In order to establish the philosophical instead
of —or in addition to— the merely sociological importance of the educational,
one should move to the other, second level: heuristics, from where (s)he might
try to render plausible (not more than that, this matter essentially remaining
one of (dis)belief to an extent) that the social actually does or can constitute
mathematical knowledge, that “the private act derives from the public act and
not vice-versa”.

The bottom line of any argument in favour of this is that mathematical progress,
through (self-)criticism and the recognition of error, is only possible within the
context of communities: mathematical activity consists of processes whereby
results are being proved, and the results themselves are not to be detached
from this creating process. Indeed, note that in the end, what convinces other
mathematicians of the legitimacy of this or that result, is never the paper proof
by itself, but an entire set of complementary unilateral messages and reciprocal
discussions surrounding it. Consequently, as the informal is apparently at work
in the context of justification also, proofs transcend formal systems, and proving
remains an open-ended process.

Informal proofs are the actual proofs of mathematical practice; the
issue is how to interpret these proofs. (Thomas Tymoczko, 1986)

The broadly Lakatosian heritage contains a stock of concepts available for at-
tempting at carrying through the latter task: conjecture, proof-idea, lemma,
criticism, counterexample, modified proof, equivalent versions, generalization,
application, reinterpretation and aesthetic considerations.



As a proposal, this way of looking at proofs would have the effect
of decentralizing the philosophy of mathematics. It implies that a
great deal of philosophical understanding must be gained on the
local level. (Thomas Tymoczko, 1986)

Let me here invoke just two concrete, and radically different examples of cases
where the social (i.e., the limits of the individual) inevitably enters the picture.
The first is that of Fermat’s Last Theorem, where socially laden issues about
reviewing, specialization, authority, and priority should be addressed (e.g., the
matter of the extremely limited number of experts able to deal with the pur-
ported proof). The second is that of the Classification Theorem of Finite Simple
Groups, where, as the full proof seems to consist of about 15.000 pages in print,
especially question about division of labour, both in place and time, force them-
selves. In both these cases, there are ready philosophical doubts about whether
it is feasible for any indivual to grasp the theorems in question and their elab-
orate proofs.

Mathematical Genius: Individual Talent or Social Grace?

In search of support for the social primacy thesis in mathematics, one should no
doubt at some point deal with one of the most fascinating and appealing phe-
nomena of cultural history: that of ‘genius’ or ‘exceptional individual’. Tackling
this subject, the anthropologist Leslie White, midway the former century, has
defended the view that mathematical truth does not ultimately reside in an
abstract or ideal realm, either of objective (Platonism) or subjective making
(intuitionism), but within cultures.

Here,

the contradiction between the view [...] that mathematical truths
are discovered rather than manmade is thus resolved by the concept
of culture. They are both; they are discovered but they are also
man-made. They are the product of the mind of the human species.
But they are encountered or discovered by each individual in the
mathematical culture in which he grows up. [...] Mathematics is
the psychosomatic response to the mathematical culture. (Leslie
White, 1949)

White thereby rules out the significance of the individual quasi completely, that
is, except for its being the biological vehicle or ‘neural locus’ for conceiving and
passing on mathematical knowledge. This knowledge itself as well as its growth,
White holds, are constituted by the community. As for the individual contri-
bution to crucial breakthroughs and related phenomena, while conceding that
some sets of brains indeed turn out to be better suited for ‘carrying’ mathe-
matical knowledge than others, this is merely comparable to some types of wire
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being better electrical conductors than others. “If the proper cultural elements
are lacking, superior brains will be of no avail”.

There were brains as good as Newton’s in aboriginal America or
in Darkest Africa. But the calculus was not invented in these other
times and places because the requisite cultural elements were lacking.
Contrariwise, when the cultural elements are present, the discovery
or invention becomes so inevitable that it takes place independently
in two or three nervous systems at once. Had Newton been reared
as a sheep herder, the mathematical culture of England would have
found other brains in which to achieve its new synthesis. One man’s
brains may be better than another’s, just as his hearing may be
more [keen] or his feet larger. But just as a ‘brilliant’ general is one
whose armies are victorious, so a genius, mathematical or otherwise,
is a person in whose nervous system an important cultural synthesis
takes place; he is the neural locus of an epochal event in cultural
history. (Leslie White, 1949)

However, this generally passes unnoticed: although the weight of the tradition
on most individual minds is overwhelming, only seldom does it get recognized
for what it is.

One may notice that scientists or artists very often speak of a divine inspira-
tional instance guiding them with seemingly compelling force. But that so-called
external intervention need not have anything mysterious about it, if what is felt
is just the tradition’s powerful embrace, which usually will choke excessive cre-
ativity or at least leave at a normalized level, but also at occasions inspires
its most sensitive and energetic minds to freshly synthesize and then —indeed—
apparently transcend the whole of it.

One of the most outstanding (non-mathematical) examples ever of this kind of
‘genius’ must have been Wolfgang Amadeus Mozart (1756-1791). The Spartan
musical education he received from his father Leopold, in combination with
his remarkable talent and sensitivity, allowed him to brilliantly redefine the
prevailing musical canon. However, for practical but also artistic reasons (both
of course being intimately related), he could not do so but from within, then at
and eventually —presumably to his ruin— past the borders of the tradition of the
day (pre-romanticism).

WEell then, equally so in mathematics, the present theory goes. At its earliest
stages, the initial conception of its most rudimentary ideas surely must have
been the work of individuals. However, without a culture facilitating their
exchange and confrontation (e.g., through symbolic representation), the human
race would have never passed beyond this phase, neither in its entirety nor in
any of its later individuals. Compare how elementary mathematical skills are
now being discovered in hominoids as in babies. Yet, other than human infants,
the former do not succeed in extending these ‘innate’ capacities, presumably for
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lack of brain power, but —evolutionary related to that— also because they find
no ‘independently’ developing stock of more elaborate mathematical concepts in
which they are further immersed. Instead, with every generation, they simply
have to start again from scratch.

Complementary to this, the pragmatist philosopher and psychologist William
James (1842-1910), in his famous lecture Great men and their environment
(1880), has likened social and biological evolution, suggesting a form of social
Darwinism to be applicable to the field of scientific research. In this eloquent
text, he dismisses predestination or determinism in earthly affairs, but even
upon its acceptance deems full knowledge about its working, i.e., omniscience,
as being outside the realm of the human mind, as the latter

has no such power of universal intuition. Its finitiness obliges it to
see but two or three things at a time. If it wishes to take wider
sweeps it has to use ‘general ideas’, as they are called, and in doing
so to drop all concrete truths. (William James, 1880)

Instead, having specific purposes in mind most of the time, man usually prefers
to narrow his scope, picking out a few objects of close attention at most, largely
ignoring the rest.

At his time, James considered the neglect of infinitesimals, being real but su-
perfluous quantities, a good mathematical example. As he argues, this general
attitude has genuine survival power: a captain navigating a vessel through a
battle should not attend to as many factors bearing upon his situation as possi-
ble, but rather concentrate on the couple of crucial parameters, if he wants his
crew to stand a chance.

Now James applies the Darwinian lesson to science, viz., the relation between
individual and social dimensions in research. That is, the genius exhibited by
individuals he considers a physiological accident (the result of random variation
in the population, which is however not at odds with any natural laws), while it
is entirely up to the social environment to preserve or destroy these particular
talents.

The physiological and social processes, says James, belong to different ‘cycles’
that have no bearing upon each other.

The same parents, living in the same environing conditions, may at
one birth produce a genius, at the next an idiot or a monster. The
visible external conditions are therefore not direct determinants of
this cycle. (William James, 1880)

In short, what James claims is that geniuses are not socially produced, but are
instead given as the results of spontaneous variation. Genius can be destroyed
or left undeveloped under external forces, for sure, but not be passed on.
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Although one should of course note that this was the end of the nineteenth
century only, James has gone rather crudely about the matter. For one, to boldly
transfer biological Darwinism to the intellectual domain passes over many a
purportedly important disanalogy between both domains. E.g., the latter realm
comparatively allows for much more flexible, i.e., creative and fast, reactions to
the limitations imposed by the social environment (which stretches the array
of available adaptational techniques). For another, James fails to say anything
significant about the ways of genius in a positive manner, that is, apart from
the alleged selecting away of unfit candidates.

Take the brilliant Indian mathematical autodidact Srinivasa Ramanujan (1887-
1920), who made a good number of stupefying discoveries and booked several
amagzing results in a quasi purely intuitive way, while on the other hand, about
half of what he came up with appears to have been near to complete nonsense
(at least to the modern Western mathematical mind). One might think that,
had he enjoyed formal education, that would arguably have developed his talent,
so as to substantially diminish the share of ludicrous ponderings.

However, alternatively, it could have as easily choked his talent. With reference
to a previous example, it was one of the remarkable features of Mozart to have
survived (i.e., digested) as a child prodigy the overload of impulses directed
towards him, especially by (or at least under the influence of) his father. Then
again, this strength might also be considered as one of the determining aspects
of ‘true’ genius, of course.

So while on the face of it, the awarding of this title ‘genius’ surely is not sup-
posed to be a matter of mere degree, education (or socialization in general) has
a possible influence on the moving individual people up (or down) the scale,
when the ability to produce splendid connections or wonderful flash insights is
concerned. To build upon one of James’s examples: one who is born a natural
idiot in one family might in the end find himself higher on the intellectual ladder
than someone else being born a natural genius in another family. Comparatively,
genius cannot just be destroyed, it can also be cultivated.

Leaving behind James, in the middle of the previous century, more fine-grained
analyses have been offered by Michael Polanyi and Robert Merton. For Michael
Polanyi, on the one hand, genius appears as a gift, on the other, it seems
to have to maintain itself through strenuous efforts. Great discoveries might
sometimes appear to be falling from the sky, but inspiration rarely calls upon
one without prior respiration. Notions like ‘intuitive’ or ‘spontaneous’ are likely
to be invoked at this point.

Our imagination, thrusting towards a desired result induces in us
an integration of parts over which we have no direct control. We do
not perform this integration: we cause it to happen. The effort of
our imagination evokes its own implementation. (Michael Polanyi,
1974)
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Discovery, for Polanyi, requires three essential faculties: the sighting of a good
problem, the quest for a solution, and the drawing of a conclusion. The first is
a guessing or estimating game, but as for example the occurrence of multiples
shows (calculus, non-Euclidean geometry, informational complexity), scientists
are usually good at it, and the anticipation powers of mathematicians are no
exception to this. As for the second, Polanyi sees a parallel to vision, we humans
being able, out of fragmentary clues, to constitute a coherent picture somehow
carrying the promise of, or suggesting, a solution lying behind it (although in
actual sight the image is certainly more vivid, the difference is said to be one
of degree). An increasing sense of coherence reduces the indeterminacy of the
enquiry, and subsequent experimenting further narrows down the scope, until
(seem to) present themselves concrete ideas that will eventually lead into a
definite solution (the third facet).

Two things spring from this. First, instead of severing the formulation of hy-
potheses and their testing/proving as two distinct, resp non-rational and ra-
tional phases, both are intimately connected: scientific discovery, for Polanyi,
starts long before subsequent testing/proving (sometimes the latter is even left
out all together), or consists in proposing a new interpretation of data already
available.

Second, non-tangible personal powers of the mind are central to the account.
Polanyi adheres to a Gestalt-psychological explanation of scientific theory, think-
ing of the latter as a cognitive equilibration effort of various pieces of experi-
ential material, an effort which first reveals a hitherto hidden reality. Contrary
to Kuhn, Polanyi does not primarily see this as a collective or paradigmatic,
but instead as highly individualized thing, which adds up to the inexactness of
all science: essential tacit elements remain hidden in each person’s individual
appreciation. Human knowledge is initially tacit to a large extent, i.e., exceed-
ing the expressible, and then undergoes consecutive emergent restructuring of
its cognitive hierarchy (which reminds of Piaget), which gradually comes to
resemble that of the objects of knowledge.

Contrary to James and Polanyi, then, Robert Merton, the champion of early
sociology of science, has conceived of scientific genius in utterly social terms.
“In this enlarged sociological conception, scientists of genius are precisely those
whose work in the end would be eventually rediscovered”, he claims. That is,
individual geniuses are taken as the functional equivalents of arrays of scientists
with varying talent. So, while it might take more individuals and moreover
their coordinated effort over a longer (or shorter!) period of time, the individual
genius, at least in the sense of being hors catégorie, as a subject is not quite
indispensable, despite clearly outranking his peers qualitatively. There is in the
end but a difference in degree.

Merton finds support for his theory in brilliant scientists having invariably been
involved in important discoveries in general, and in multiples specifically (e.g.,
he points to thirty-two such instances for Lord Kelvin alone), at least to an
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extent considerably superior to that of their ‘ordinary’ colleagues. Still, he
maintains, indeed they seem not to have been strictly indispensable for any of
these.

The sociological theory of scientific discovery has no need, therefore,
to retain the false disjunction between the cumulative development
of science and the distinctive role of scientific genius. (Robert Mer-
ton, 1973)

While clearly being at the opposite end of the spectre, as compared to James,
Merton adds that while made discoveries for him could have been reached with
quite another mix of individual genius and collective effort as well, he will not
have it that particular discoveries are or have been inevitable, any which way.

Interestingly, the mathematician Raymond Wilder, near the end of his ca-
reer, has also touched upon this topic, for the specific case of mathematics.
He confirms the minimal requirement of a suitable social environment, when
considering the scientist ahead of his time, thus ignored and later rediscovered,
thereby meriting himself the label of ‘genius’.

We can accept that he was undoubtedly an unusual person, per-
haps a genius, but without some motivation and something to base
his ideas upon, his creative faculty could not have progressed far.
(Raymond Wilder, 1981)

Therefore, Wilder has wondered how some allegedly misunderstood geniuses
actually related to their area of interest as well as more general culture. A
classic case in point would be the Moravian monk Gregor Mendel (1822-1884),
pioneer in genetics, well known for his pea-experiments, but only rediscovered
and acknowledged as such in 1900.

For mathematics, Wilder proposes the names of Bernhard Bolzano (1781-1848),
for his original work in real analysis, as well as the French military architect and
engineer Gérard Desargues (1593-1662), for his visionary anticipation of projec-
tive geometry, in Brouillon projet d’une atteinte aux événements des rencontres
d’un cone avec un plan (Proposed draft of an attempt to deal with the events
of the meeting of cone with a plane; 1639), which according to Struik remained
unrecognized until the nineteenth century.

If “Desargues’ work was fully as brilliant as anything to be found in the contem-
porary analysis”, Wilder wonders, then why was it abandoned? Well, to begin
with, his book was limited to fifty copies only, although that would not have
been exceptional in times when it was customary to distribute one’s work oneself
through informal channels. Also, it contained some strange terminology, how-
ever again not to the extent of frightening the attentive and interested reader.
Consequently, the major causes for the actual preference which was given to
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(new) analytic geometry, Wilder thinks, are rather to be found elsewhere, viz.,
in the general mathematical climate of the seventeenth century and the internal
nature of Desargues’s theory, as compared to prevailing standards.

As for the former component, Desargues’ proposals could not readily be received
within the existing conceptual framework, for this would have required the no-
tion of ‘free geometry’ (i.e., unrestricted by Euclid). “Not until the nineteenth
century was it possible even to think of a geometry founded on the concept of
transformation and invariant (finally culminating in Klein’s Programm)”. An-
other cultural aspect is the lack of institutionalization. Desargues was not a
teacher, could therefore not gather disciples, which was (is) not a sine qua non
but surely of great help in disseminating and developing a theoretical framework.

As for the second dimension, its internal structure, despite having been the
work of one isolated man only, the book nevertheless attracted the attention
of some of the finest contemporary spirits, such as Fermat and Pascal. But
everybody, up to and including Desargues himself, considered its capacities to
remain fundamentally Euclidean in nature, thus not sowing the seeds of a new
geometrical approach at all. As such, it did not pose a challenge to the existing
tradition. Its inherent conceptual stress, which would lead into the concept of
line at infinity, was not yet felt strong enough in order for the framework to
be turned into a new tradition outside Euclidean geometry, viz., based on the
concepts of transformation and invariant.

It might have survived, though, had it at the time been consolidated with the
rest of mathematics (the way its successor, projective geometry, did consoli-
date with algebra and analysis in the nineteenth century, through the work of
Monge and Poncelet, among others), or had concepts from other branches been
injected into it. In conclusion, what in general characterizes the mathematical
precursor/genius, for Wilder, is that (s)he is basically a loner coming up with
terminological and conceptual novelties which the existing culture is not ready
for, and consequently are not accepted and disseminated, or remain unnoticed
altogether.

Note: for more details about any of the references, send an e-mail to:
bukerkho[atjoub.ac.be
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