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Abstract

Recent years have seen a growing acknowledgement within the mathematical
community that mathematics is cognitively/socially constructed. Yet to anyone
doing mathematics, it seems totally objective. The sensation in pursuing
mathematical research is of discovering prior (eternal) truths about an external
(abstract) world. Although the community can and does decide which topics to
pursue and which axioms to adopt, neither an individual mathematician nor the
entire community can choose whether a particular mathematical statement is true
or false, based on the given axioms. Moreover, all the evidence suggests that all
practitioners work with the same ontology. (My number 7 is exactly the same as
yours.) How can we reconcile the notion that people construct mathematics, with
this apparent choice-free, predetermined objectivity? I believe the answer is to be
found by examining what mathematical thinking is (as a mental activity) and the
way the human brain acquired the capacity for mathematical thinking.

Introduction

When I do mathematical research, the overwhelming sensation I have is one of
discovering facts about a pre-existing world that is “out there,” with my research
amounting to an exploration of that world. Practically every other mathematician I have
spoken to about it says the same, and many have made similar observations in print.

Yet I, along with many (though in this case by no means all) other mathematicians
acknowledge that mathematics is an abstract domain of ideas and mental processes
that we humans have created — it is a social construct. I (and many of my colleagues)
find the idea of mathematical objects having some prior existence simply not tenable, at
least if we understand “existence” in a manner even remotely close to its generally
accepted meaning.

I need to pause to make an important aside at this point. This paper is not intended as a
philosophical analysis of Platonism, a subject that over the years has generated a
considerable amount of debate. Rather, my aim is to try to understand, in everyday
terms as a practicing mathematician, why doing mathematics creates the sensation of
reality that it does. The explanation, if there is one to be had, will surely have to involve
both psychological and neurophysiological considerations, and neither of those
disciplines is at a sufficiently advanced stage to be able to buttress a solid argument.
Thus, my argument will of necessity have the flavor of a “folk theory,” and be at best
suggestive of a possible more scientific explanation some time in the future.
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The puzzles that the social construct view leads to are to explain, first, why the
mathematics we develop or discover is the same for all of us (for instance, your number
7 is the same as mine, and we both agree that 3 + 5 = 8), and second, why does doing
mathematics create an almost unavoidable sense of discovery?

No other area of human creativity has this feature. True, novelists and playwrights often
remark that, once they have created their characters, they take on a life of their own and
do things over which the novelist of playwright has little of no control. And Michaelangelo
is alleged to have said that he did not create the David, rather it was already present in
the block of marble he started with, and he simply removed all the rock that was not the
David. It is not hard to understand why they would feel this way. Good novelists and
playwrights create characters that follow the norms of human behavior and great
sculptors have a keen sense of visual aesthetics. Yet it is easy to imagine a character in
a novel or a play do some things differently, or that if Michaelangelo had died before
completing the David and someone else had finished the work, then certain features
would have come out differently. But with mathematics this is not the case. If certain
mathematicians had not lived, it is possible that some of their mathematical results
would not have been obtained, or would have been discovered much later than they
were, but it is simply not possible that someone else could have come along and proved
a contrary result. Mathematics cannot go any other way than the way it does.

I believe that the only way to reconcile the sensation and absolute certainty of
mathematics with its nature as a social construct is to look closely at the way the human
brain — as a biological organ — does mathematics. Thus, although the question I
address is very much one in the philosophy of mathematics, my proposed solution will
not be one of philosophical argument, rather will be based on considerations of cognitive
science, evolutionary biology, and neurophysiology.

I begin with a brief discussion of the nature of mathematical thought.

Mathematical thought

What is the nature of mathematical thought? Although I have been a mathematician for
forty years, I am still not clear exactly what the nature of the mathematical thought
process is.

I am sure it is not linguistic. Mathematicians do not think in sentences; at least not most
of the time. The precise logical prose you find in mathematical books and papers is an
attempt to communicate  the results of mathematical thought. It rarely resembles the
thought process itself.

I am in remarkably good company in having this view of mathematical thinking. For
instance, in 1945, the distinguished French mathematician Jacques Hadamard
published a book titled The Psychology of Invention in the Mathematical Field, in which
he cited the views of many mathematicians on what it feels like to do mathematics. Many
of them insist that they do not use language to think about mathematics. Albert Einstein,
for instance, wrote:

Words and language, whether written or spoken, do not seem to play any part in
my thought processes. The psychological entities that serve as building blocks for
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my thought are certain signs or images, more or less clear, that I can reproduce
and recombine at will.

Hadamard himself makes the same point:

I insist that words are totally absent from my mind when I really think . . . even after
reading or hearing a question, every word disappears the very moment that I am
beginning to think it over.

Of particular relevance to my thesis are the mathematicians’ descriptions of the way they
arrived at the solutions to problems they had been working on. Time and again, the
solution came at a quite unexpected moment, when the person was engaged in some
other activity and was not consciously thinking about the problem. Moreover, in that
inspirational moment the whole solution suddenly fell into place, as if the pieces of a
huge jigsaw puzzle had been dropped onto the floor and miraculously landed as a
complete picture. The mathematician “saw” the solution and instinctively knew it was
correct.

No language is involved in this process. Indeed, with a problem for which the solution is
fairly complex, it might take the mathematician weeks or even months to spell out (in
linguistic form) the step-by-step logical argument that constitutes the official solution to
the problem — the proof of the result.

So if mathematical thought is not linguistic, if mathematicians do not think in words (or
algebraic symbols), how exactly does it feel to a mathematician thinking about
mathematics? This is, of course, a subjective question, so I will have to give a subjective
answer, but I know that my experience is fairly common among mathematicians.

When I am faced with a new piece of mathematics to understand or a new problem to
work on, my first task is to bring to life the mathematical concepts involved. It is as if I
have been given detailed instructions (including plans and blueprints) to build and
furnish a house. By studying the instructions, I can locate and acquire the necessary
materials, fittings, and furnishings, and, step by step, I construct the house. When it is
finished, I move in. Because I have built the house myself, I know the layout.  Although it
feels a bit strange at first, within a few days I know the house so well that I can get
around quite well in the dark.

Of course, some things in the house were bought as completed units — the boiler, for
instance — and I do not fully understand how those items are constructed or how they
work. For example, I simply know the manufacturer’s specifications of the boiler and how
it fits into the heating system. I have neither the time nor expertise to learn boiler design
and manufacture. I rely on the claims made by those who have designed and
manufactured the boiler that it works as they say it does. If there later turns out to be a
problem, I will have to call them in for help.

But I can live in the house without having to think consciously about the building
process. The house is there, I am living in it, and I know my way around. My next task is
to move the furniture around so that it best suits my lifestyle. Because I am familiar with
the house and its contents, I do not have to think about each piece of furniture
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individually. I can concentrate on the arrangement of the furniture, what items go with
what other items.

Similarly, when I start to think about a new piece of mathematics or am faced with a new
mathematical problem, my first task is to build the “house” — a “house” built of abstract
mathematical objects, fastened together by abstract logical and structural relationships.
Understanding mathematics is like building the house and thereafter knowing my way
around it.

Others have used different metaphors, though always the crucial feature is of exploration
of a pre-existing domain. For example, David Hilbert, probably the leading
mathematician at the end of the nineteenth century, used a garden metaphor when he
wrote these words about his mathematical collaboration with Felix Klein, one of the
pioneers of group theory:

Our science, which we loved above everything, had brought us together. It
appeared to us as a flowering garden. In this garden there are beaten paths where
one may look around at leisure and enjoy oneself without effort, especially at the
side of a congenial companion. But we also liked to seek out hidden trails and
discovered many a novel view, beautiful to behold, so we thought, and when we
pointed them out to one another our joy was perfect. [Quoted in Weyl (1944),
p.614.]

These days, there is such a great volume of mathematics, much of it so complex, that no
one mathematician could possibly master more than a small fraction. Consequently, like
every other mathematician, I have to take a lot on trust. For example, to solve a
particular problem I may use results obtained by other mathematicians. In order to
develop my solution, I must understand those results and be able to apply them to my
own problem. But I may well have neither the time nor the necessary expertise to
understand just how those other mathematicians obtained those results. I rely on their
expertise, together with the fact that, in order to be published, their work had to be
examined in detail and certified as correct by other mathematicians — just as when I
purchase a sophisticated, computer-controlled boiler for my house, all I need to know
are the power ratings and the installation procedures. I do not need to understand how
the boiler works. I rely on the expertise of the designers and manufacturers who
produced the device, together with the government certification procedures that ensure
its safety.

Thus, understanding the mathematics required to solve my problem may well involve
learning a number of mathematical facts without knowing exactly how they were
established. Just how much I need to know about those supporting facts in order to
solve my problem is a matter of mathematical judgment. I may find out later on that I
need to learn more about how a particular fact was established by someone else —
perhaps because I want to modify that earlier result in some fashion. But I won’t worry
about that possibility until it arises.

Once I have understood the mathematics involved in a particular problem, then I can try
to solve it. Trying to solve a problem is like moving the furniture around in the house to
find the best arrangement.
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Notice that, once the house has been built and the instructions and plans have been
stored away, there is no more need for language. I simply live in the house. Language is
required only if some problem sends me back to the plans, or if I want to remodel or
purchase a new item. And, of course, I need language if I want to describe to someone
else how I built the house or why I arranged the furniture the way I did.

To me, then, learning new mathematics is like constructing a mental house in my mind;
understanding that new mathematics is like becoming familiar with the interior of my
mental house; and working on a mathematical problem is like arranging the furniture.
Thinking mathematics is like living in the house. As a mathematician, I create a symbolic
world in my mind and then enter that world.

But why is the mathematical world I create and explore, to all intents and purposes the
same as the one created by every other mathematician?

I shall provide three answers, one within the framework of cognitive science, the second
based on our knowledge of the evolutionary development of mathematical ability, and
the third in terms of neurophysiology. The three answers are all consistent, and can be
regarded (I do so regard them) as three different levels of the same argument. My thesis
is related to the fact that the above analogy of building, furnishing, and living in a house
is much closer to the practice of doing abstract mathematics than might first be
supposed.

The cognitive argument

In their book Where Mathematics Comes From: How the Embodied Mind Brings
Mathematics into Being, George Lakoff and Rafael Nunez argue that mathematical
entities are constructed by a process of iterated metaphors that are grounded in
everyday experience of the physical world. With each new metaphor in the iteration
chain, we lift reasoning processes that (therefore) are also grounded in everyday
reasoning.

At its heart, the fundamental driving force behind the Lakoff–Nunez approach is the
rhetorical question, “How else could a physical brain that evolved to ensure our survival
in the physical and later social worlds construct and do mathematics?” In a much earlier
work with David Johnson, Metaphors We Live By, Lakoff presented a similar argument
for our capacity for language.

Since the Lakoff–Johnson and Lakoff–Nunez arguments are very well known, I shall not
describe them here. Instead, I will move quickly to establish a consequence of the
metaphor theory for the sense of realism that accompanies mathematical thought.

What the metaphor argument comes down to is that we don’t so much acquire new
mental skills or abilities as we learn how to use existing skills in new domains. More
precisely, we construct (or rather our brain constructs, often without any conscious
knowledge on our part) a mapping from an existing domain of expertise to a new domain
and we use that mapping to lift the processes we use in the existing domain into the new
domain. In other words, we construct a metaphor. One we have mastered a domain in
this way, the metaphor construction process may be iterated to extend our abilities to yet
another domain. See Figure 1.
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Figure 1. Metaphor. The metaphor maps a familiar domain into a novel domain. It
takes familiar concepts such as A and B to new concepts X and Y, and a familiar
process p that leads from A to B to a new process q that takes X to Y. There are two
alternate interpretations of the diagram in terms of cognitive activity. Either the brain
learns to perform q on X to get to Y, q(X) = Y, perhaps using p as a model, or else the
brain pulls back from the new domain to the familiar one, applies p, and then passes
back to the new domain again, M p M–1(X) = Y. The thesis presented in this paper is
that the brain uses the second mechanism. In other words, the way to view the
diagram is right-to-left, not left-to-right.1

A particularly important feature of this metaphor process from our current perspective is
that construction of a metaphor is complete when the new domain appears to us as real
and concrete and familiar as the old. Since the entire iteration begins with the real,
physical world, a simple induction proof establishes the fact that any domain over which
we achieve mastery will seem real and concrete. To put it another way, we never
actually learn to reason with abstractions in an abstract domain, rather we continually
take a new abstraction and, through the metaphor process, bring it into the cognitively
concrete realm that our minds can handle.

It is important not to be deceived by the simplicity of the above argument. The
conclusion is deep and profound: The brain can think only in real, concrete terms. We do
not learn to think abstractly; we learn to make the abstract appear real. We do not
extend into a new realm, we pull back into a familiar one.

I should stress that neither Lakoff and Nunez nor I claim that this metaphor construction
process is a conscious one, or even that it is best described at the level of mind. Rather,
the issue is what brain circuitry2 is used when a new concept or domain is being learned.
Does the brain create new circuitry or does it map the new domain back to existing
circuitry and use that? Reflection on the way the brain works (insofar as neuroscience

                                               
1 Lakoff and Nunez claim that this pullback metaphor process will give all of mathematics. I and
others have argued that it does not apply to some of the more advanced parts of the subject,
which are linguistically defined. For those parts of mathematics, we suggest, a modified process
is used.
2 I am using the word “circuitry” in a somewhat metaphorical fashion, to refer to established neural
activity patterns.
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has so far provided us with some knowledge) together with an application of Occam’s
razor, suggests to me that we should opt for the pullback mechanism.

The experience we have when we learn a new mathematical concept or technique is
that it first seems abstract and then, after practice, it becomes concrete. (Think how
concrete numbers seem. Yet they are every bit pure abstractions as any other
mathematical concept.) It is tempting to view the acquired sense of concreteness as a
consequence of growing mastery of the new concept or technique, but this is not the
case. Rather, the feeling of concreteness is a precursor to mastery — it is how the brain
achieves the mastery.

This is why mathematics is perceptually Platonistic (to give this phenomenon a name).
That is the only way the human brain can do it.

Moreover, since the metaphor-iteration process begins in the physical world, which is the
same for all of us, we all end up with the same mathematical domain, or at least
mathematical domains that agree in their structure and properties wherever they
overlap.

In the remainder of this paper I will present two (inter-related) further arguments that
support that last claim, one evolutionary, the other neurophysiological. Preparatory to
both arguments, we need to take a brief look at what brains do.

What brains do

Brains are primarily survival devices. They evolved to mediate between input stimuli and
output responses, enabling their owners to discriminate between different kinds of
environmental influences and to learn from past experiences. Mental activity that
supports the creature’s survival or helps it achieve goals consistent with its survival is
generally referred to as “intelligent behavior.”

Though the popular model of the human brain today is a computational device, that is
primarily just a reflection of the dominant technology in contemporary society. In the
early days of the telephone system, people likened the brain to a telephone exchange.
Consideration of the evolutionary development of brains leads to a model that I
personally find much more compelling: a brain is a device for discriminating types (of
objects, people, creatures, situations, emotions, etc.) and associating with discriminated
types certain types of action, generally actions appropriate to the creature’s survival.

In fact, intelligent behavior can be thought of as (I would go further and say “is”) the
discrimination of sufficiently many types and the association of sufficiently appropriate
types of response to the types perceived. Let me elaborate this point. In particular, what
do we understand by the word “intelligent” and what exactly do I mean by that word
“sufficiently” in that previous sentence?

A crucial feature of living entities (although not one unique to living creatures) is that they
adapt (some of) their behavior according to changing circumstances. A simple binary
thermostat provides a non-living example of such reactive behavior. For an example that
is a living organism not having a brain, consider the way that a sunflower orients itself
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throughout the day so that the flower always faces the sun. We might describe the
behavior of the thermostat by saying that it discriminates two types (say, warm and
cold). Likewise, the sunflower could be said to discriminate the type “facing the sun.”
Though the thermostat acts in the manner for which it was designed and the sunflower’s
actions ensure its survival, we would probably not want to refer to their behavior as
“intelligent”. Whatever intelligence is, it surely requires a brain. But how much of a brain?

Again, there are simple water-based bacteria, which move toward nutrients in the water
and swim away from regions that contain chemicals poisonous to them. Such a creature
discriminates the types nutritious and poisonous. From the point of view of the individual
bacterium, such discrimination, together with the behaviors it evokes, could be described
as “intelligent” behavior, but as a fairly simple, low level, chemical response, most of us
would still be reluctant to dignify it with such a loaded term as “intelligence”.

Moving on, Stomphia coccinea is a species of sea anemone whose ocean environment
typically contains eleven types of starfish, only two of which prey on the anemone. If one
of the nine non-threatening species of starfish happens to brush against a Stomphia, the
anemone does not react. If one of the two predator starfish touches a Stomphia,
however, the anemone recoils immediately. As with the bacteria, this is purely an
automatic response to a particular chemical or collection of chemicals found in the two
predator species but not in the other nine. But the Stomphia’s  ability to distinguish
between two types of starfish — dangerous and not — is a cognitive ability that helps to
keep it alive. Are we fully justified in refusing to call that behavior “intelligent”?

Proceeding to creatures with brains, when rooks see an animal coming too near their
nest, they will pick up stones and drop them on the invader to drive the threat away. The
rooks discriminate creatures that are “too near” from those that are not and act
accordingly. Is that “intelligent” behavior?

A leaf cutting ant that encounters an opening too narrow for the leaf it is carrying will
maneuver the leaf until it can pass through the opening. The ant discriminates openings
that are sufficiently wide from those that are not, and adapts its behavior accordingly.
Does that qualify as “intelligent” behavior?

How about the now famous octopus that figured out how to unscrew a mason jar in order
to get to food inside? Several kinds of type are involved in this sequence. Intelligent
behavior or not?

Or consider the chimpanzee which, when presented with a banana suspended beyond
its reach from the roof of the cage, thought for a while, then dragged a box from the
other side of the cage until it was beneath the banana, climbed onto the box, and
grabbed the banana. The chimp clearly had to discriminate many types in order to
perform that feat, and it is hard not to classify this action as “intelligent” in the very same
problem-solving sense we would apply the term to humans.

Finally, when you or I feel sick we visit a doctor. We do so because the doctor has
acquired the ability to discriminate a great number of types of illnesses and symptoms
and is able to associate with those types the appropriate kinds (types) of action:
particular medicines to take, certain further tests to carry out, perhaps a surgery to
perform, and so forth.
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Looking back at those examples, we may be unable to draw a clear line between
intelligent behavior and mere “stimulus-response” activity, but by the time we get to
chimpanzees most of us seem to agree that we are in the realm of intelligence. Though
my first few examples might suggest that there is a continuous spectrum of increasing
degrees of “intelligent” behavior, with thermostats and sunflowers at one end and
humans at the other, this is not the case. There is a spectrum, but it is not continuous.
There is a difference in kind between the chimpanzee and all the previous examples,
and a second qualitative difference between chimpanzee intelligence and human
intelligence.

The McPhail hierarchy

A useful way to approach the behavioral capacities of brains is to make use of a
classification of “intelligent activity” introduced by the British psychologist Euan McPhail
a few years ago. McPhail provided a three-point scale of intelligent behavior.

Practically all living things exhibit McPhail’s lowest level of intelligence: they can respond
(in a manner advantageous to their survival) to certain stimuli. Call this
stimulus–response (or S-R) behavior. You don’t require a brain to produce S-R behavior;
think of the way a sunflower turns its head to follow the sun each day. McPhail uses the
term “S-R intelligence” to refer to any stimulus-response activity advantageous to
survival, and I shall follow suit. Apart from the thermostat, all the examples I gave above
up to, but not including, the chimpanzee are of S-R intelligence.

The chimpanzee’s solution to the banana problem, in contrast, requires a plan of action.
The chimp not only acts intelligently, it is intelligent. Notice, however, that all the
elements of the chimp’s plan were physically present — to use a computing term, the
chimp formulated its plan “on line,” while still receiving visual input about the objects it
was thinking about.

The chimp exhibits what McPhail calls stimulus–stimulus (or S-S) behavior, and may be
said to have S-S intelligence. S-S intelligence requires a brain. Learned S-S behavior
involves the forming of mental representations. Most likely brains developed initially as
organs to facilitate S-S behavior. It is an effective survival strategy, since it allows an
animal to adapt its response pattern based on past experience.

McPhail’s third level of intelligence involves symbolic representation and language, and
as far as we know, humans are the only creatures that have attained this level. Call it LI,
for linguistic intelligence. (The reason for giving language such prominence in a
classification of intelligent behavior will become clear presently.)

McPhail’s classification is a rough division of a broad spectrum into three overlapping
groupings. At least, the first two groups overlap, and we can understand how it is
possible to progress up the spectrum by a long chain of incremental evolutionary
developments.

The advantages conferred on an S-R intelligent species in terms of natural selection as it
acquires S-S intelligence are fairly clear, since S-R intelligence generates highly
predictable behavior patterns that a predator can take advantage of, whereas S-S
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intelligence means that the creature can mediate its responses, taking account of past
experience or novel features of the environmental inputs. Thus, over time, we would
expect to see more and more species acquire S-S intelligence. LI intelligence offers still
greater advantages in terms of natural selection, but whereas it is easy to envisage
mechanisms that would lead from S-R intelligence to S-S intelligence (for example, the
introduction of intermediate, or “hidden” layers in a neural net can achieve this effect), it
is much harder to postulate a mechanism that will take a species into the LI-intelligence
realm. And in fact we have evidence only that this has happened once, namely with the
evolution of Homo sapiens. But just how did the transition occur?

I will answer this by first presenting an argument having a fictional element, then I shall
remove the fiction.3

Over a period of three-and-a-half million years, our ancestors brains increased in size
and complexity, eventually becoming nine times the size of the brains (per unit weight) of
other mammals. As they did so, they developed an increasingly rich capacity to
differentiate types of stimuli and forge links between those types. What began as an
organ to generate physical responses to physical stimuli evolved into a device that could
produce one internal stimulus from another — S-S behavior. Over time, Homo erectus
brains developed a wide repertoire of such stimulus–stimulus links. One might be willing
to call this activity “thinking.” But the subject matter of that “thinking” remained the
physical environment. Erectus’s world — what he thought about — was the physical
world around him.

Imagine now (and this is the fictional part) that a second brain grew, parasitic on the first.
This second brain had a similar structure to the first, except that its world was the first
brain. Where the first brain received its initial stimuli (its inputs) from the physical world,
the second brain received its stimuli from the first brain; and where the eventual
responses (the outputs) of the first brain were physical actions in the world, the
responses of the second brain were further stimuli to the first brain. We might then be
inclined to refer to the activity of the second brain as “symbolic thought.” Whereas the
function of the first brain was to manipulate physical objects in the physical world, the
function of the second brain was to manipulate symbolic objects that arose in the first
brain. The two brains had essentially the same structure, and worked the same way, the
only difference between them being the sources of their inputs and the targets of their
outputs.

As a first step toward eliminating the fiction now, we can, to a first approximation, think of
the prefrontal lobes of the Homo sapiens as this second, “parasitic” brain. This part of
the brain is a recent addition, and it’s where much of language processing takes place.
But given the degree of interconnections between all parts of the brain, this is far too
simplistic. Strictly speaking, there is no parasitic second brain. That’s what makes my
account so far fictional. Eliminating the fiction completely now, I suggest that the
emergence of symbolic thought arose when the brain — the first brain, if you like — itself
developed the ability to function as the second brain. In other words, the brain became
able to generate its own stimuli — to create and think about imaginary situations of its
own creation, independent of any input from the physical world.

                                               
3 This is essentially the argument presented by Bickerton (1995).
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Bickerton (1995) refers to this form of brain activity as “off-line thinking.” Another way to
think about it is that, instead of directing actions in the world in response to stimuli from
the environment, the brain runs simulations of possible actions (and their consequences)
— “What if?” scenarios — that would be initiated by imagined (external or internal)
stimuli.

Let me explain this change in brain capability in physical terms.

Changing the brain

Our present understanding of the way the brain works is that thinking (conscious or
otherwise) involves fluctuating electrical (and electrochemical) activation patterns of
networks of neurons. The simplest non trivial example of a brain would have just two
sets of neurons, one that accepts inputs from the outside world, another that generates
output responses. Each input neuron is connected to several (maybe all) output
neurons. The connections are of different capacities. The capacities of some
connections may be variable, in that they become stronger the more frequently they are
used.

Such a device, which is easily simulated on a digital computer by a neural net, produces
stimulus–response behavior. Each pattern of inputs (different strengths of current going
in to each input neuron) generates a corresponding pattern of outputs. Where neural
connections have variable capacities, the device can “learn” a new stimulus–response
pattern if given the appropriate training. (This requires a feedback mechanism to adjust
the capacities of the variable connections.) For example, in the early 1980s, cognitive
scientists David Rumelhart and James McClelland constructed a neural net with 460
input neurons connected to 460 output neurons that was able to learn how to form the
past tense of a number of verbs, including both regular and irregular verbs. (See
Rumelhart and McClelland 1986.)

Figure 2. A simple neural network with one hidden layer.

A more complex brain would have one or more layers of neurons (neural “hidden
layers”) between the input and output neurons, mediating the flow between them. (See
Figure 2.) Such a brain, which is also easy to simulate as a neural net, is capable of
more sophisticated behavior than a simple two-layer network.
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Any mammalian brain is already far more complex than any neural net that can be
simulated on a digital computer. The human brain contains roughly 100 billion neurons,
each directly connected to between 1,000 and 100,000 other neurons. The number of
possible activation patterns is far larger than the number of atoms in the universe.

Suppose for a moment we were able to see inside the human brain, and that a neuron lit
up whenever it fired, its brightness depending on the strength of the firing. Given an
input pattern from the nervous system, we would first observe a collection of illuminated
neurons of different brightnesses spread all over the brain, with concentrations of
brightly lit neurons in one or two areas. (See Figure 3.) This pattern would represent the
input stimulus. We would then observe a veritable light show as current flowed (in
parallel) from neuron to neuron. This is the brain processing (or thinking about) the input
stimulus. If this activity resulted in a command to the body to perform a particular action,
say to duck to avoid an approaching projectile, we would ultimately see a configuration
of neurons light up that would cause signals to travel to the body’s muscles, the effect of
which would be that the body ducked down.

Figure 3. Neuronal activity

We would observe a similar sequence of electrical activity if we were likewise able to
observe the internal workings of, say, any mammalian brain or of a pre-human hominid
brain.

In terms of brain activity, off-line thinking occurs when the brain simulates an externally
produced activation pattern to start the sequence, and then runs through the ensuing
sequence without necessarily generating a bodily response.

Not all brain activity requires an external stimulus, of course. The brain of any creature is
constantly active, monitoring, controlling, and initiating various body processes.
Moreover, animals’ brains initiate actions such as obtaining and eating food, and
engaging in sex (although bodily signals to the brain are also involved in initiating those
actions). Moreover, even when a human is engaged in the supremely off-line thought
process of working on a mathematical problem, bodily responses are generated,
perhaps the formation of a frown or the repeated tapping of a pencil on a desk. But these
are not the kinds of stimuli or responses I am referring to. Rather, I am thinking
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predominantly of the kind of brain activity that is generally occasioned by an external
stimulus.4

Of course, an external stimulus can also cause off-line thinking. Indeed, it very often
happens that some external event sets us onto a particular train of (off-line) thought.
Thus, the description I have given is a simplistic one. The point I am trying to get across
is this: An animal having S-S intelligence but not LI cannot initiate a particular pattern of
brain activity normally occasioned by an external stimulus in the absence of such a
stimulus. The appropriate initial activation pattern requires an input stimulus from the
outside world.

In the case of a monkey, for example, the activation pattern we might describe as
“thinking about eating a juicy pear” can only be initiated by input from a particular juicy
pear — say sight or smell — or perhaps a photograph of a pear. There is, unfortunately,
no way of proving this, given present-day methods, since we have no way of knowing
what a monkey is thinking about. Likewise, in the case of Pavlov’s dogs, salivating at the
sound of a bell, we have no way of knowing if they have any thoughts about an imminent
meal. The most we can know for sure is that, through training, one initiation stimulus
(real food) can be replaced by another (a bell).

For an LI animal, however, the initial activation pattern that starts a particular activity
sequence can be generated by the brain itself, without any external input.  For example,
as humans we can imagine a juicy pear, complete with sight, texture, smell, taste, and
sound, and think about eating it, even when no actual pear is present. (Actually, the
activity pattern activated by the sight of a real pear and that initiated by an imagined pear
will not be exactly the same. Dieting would be easy indeed if imagined eating were
subjectively indistinguishable from real eating.)

Off-line thinking

Off-line thinking is thinking about a world of internally generated symbols. Those
symbols may correspond to real objects in the world, such as when we think about our
distant relatives whom we have not seen for several years. Or we can think about things
that have never existed, such as unicorns.

                                               
4 Dreaming is an interesting intermediate case, since dreams do appear to start spontaneously,
in many nonhumans as well as in humans. Despite considerable research, however, little is
known about dreaming. It appears to involve random combination of parts of activation chains
that have already been produced during awake activities. The repeat of parts of “meaningful”
activation chains, which were once initiated by physical stimuli, may be what gives dreams their
(recollected) content, even though there is a strong element of random firing involved. But since
our only conscious knowledge of our dreams is the recollection we have when we wake up, any
meaningfulness may be illusory. And we have no way of knowing whether nonhuman dreaming,
say by a cat or a dog, involves any mental activity meaningful to that animal. Given the problems
involved in trying to understand what goes on in dreaming, it is far more likely that a greater
understanding of thinking will cast light on the nature of dreams than that discoveries about
dreams will help us understand thinking.
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Off-line thought may be initiated spontaneously by the brain or by direct input from a real
object, or by some combination of the two, such as when climbing into our car begins a
train of thought about whether to trade it in for a newer model. Our existing car is real —
we are sitting in it; the new car we think about acquiring in its place might not exist
except as a mental amalgam of features we would like it to have.

As far as we know, no animals other than humans are able to think in this off-line
fashion. Doing so is clearly a high-risk, high-gain strategy. One obvious gain comes from
being able to reflect at length about past events and to plan future actions long in
advance, thinking about various alternatives. This is an excellent survival strategy for a
creature that is not particularly big, strong, or fast, has an easily penetrated outer skin,
and does not have sharp claws or a large jaw and strong teeth. An obvious risk is that a
human engrossed in thought is a prime target for a passing saber-toothed tiger or some
other mishap.

One way to reduce this risk is to ensure that part of the brain continues to monitor input
stimuli from the world. This is exactly what happens. No matter what activity our
“symbolic” neocortex is engaged in, the amygdala (the so-called “reptilean brain” that all
animals possess, on top of which the human neocortex developed) continues to do what
it always did: keep its owner alive. If anything unexpected or threatening arises, it rouses
the entire brain into taking evasive action.

For instance, we rely on this alarm system when we drive a car along a familiar route.
Most of the time our mind wanders, perhaps reflecting on the day’s activities or planning
a camping trip. We are only vaguely conscious of our driving, or of what is going on
around us. Then suddenly a small child runs out of a doorway toward the road ahead.
Whatever we were thinking about is suddenly gone from our mind, and before we realize
it we are braking fiercely to avoid an accident. All our attention is now on our driving.

With the amygdala constantly on the lookout for signs of danger, the potential drawbacks
of off-line thought are significantly reduced, providing Homo sapiens with an opportunity
to enjoy some of the benefits. Surely the most significant of those benefits was
language. Off-line thinking automatically gives you full language. Or, more precisely, off-
line thinking and language are two sides of the same coin. You can’t have one without
the other. This brilliant observation was first made by Bickerton (1995).

Language for free

To see this, notice first that off-line thinking does not require that the brain generate an
exact replica of a real world situation; just an activation pattern that is sufficiently like an
externally generated pattern to for the process to have survival value. The question is,
what features of the world are absolutely necessary for this to occur?

Surely, agent (subject), action or relationship (verb), and patient (object) are absolutely
essential for any useful internal model of the world, and a good case can also be made
for at least some temporal (tense) distinctions. If the objects of thought are objects in the
world, the off-line thinking amounts to simulation. If, however, the objects of thought are
symbolic representations of things in the world (“words”, if you like), the off-line thinking
amounts to sentence construction.
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But for off-line thinking, this distinction between the objects of thought being objects in
the world and being symbolic representations of objects in the world is spurious.
Everything is symbolic. When the brain develops the ability to generate specific
activation patterns that initiate and maintain meaningful chains of activation, (referring)
words inevitably arise. What else would constitute the realization in the brain of the word
“cat” but the brain activation pattern that stands for “a cat” in off-line thought? To put it
another way, it is precisely when the brain acquires the ability to generate such a pattern
spontaneously that we are justified in saying that the individual “knows” the word “cat”.
This is why McPhail’s third level of intelligence is called “Linguistic Intelligence.”

The story of evolution is one of endless opportunism. Change occurs as a result of
random “errors” (mutations) in copying DNA molecules. If a randomly introduced feature
offers a certain survival or propagation advantage to the members of a species, that
feature will tend to become steadily more prevalent until it is the norm. Sometimes, a
feature that has evolved because it offered one survival advantage turns out to be useful
in a quite different way. It then evolves further, driven by the new use. Eventually, it may
no longer be possible to recognize the feature’s original “function.”

The ability of the human brain to produce and understand language arose in just this
opportunistic fashion. On at least two occasions, nature took a feature that had
developed for one thing and used it for another, a process evolutionists refer to as
exaptation.

We have observed that brains originally functioned as stimulus–response devices; they
recognized certain types and produced appropriate responses. Primitive brains, for
example those of reptiles or amphibians, have all their stimulus–response mechanism
hard-wired into their structure. More complex brains, including human brains, have some
stimulus-response mechanisms hard-wired, but they can also acquire additional
stimulus–response connections through repetitive learning or training.

That growth was most likely driven primarily by the advantages of having a greater
capacity to recognize types and being able to form increasingly rich associations
between types of objects or situations encountered and appropriate types of responses.
It is, however, likely that elements of this rich repertoire of recognized types were
articulated as sounds, yielding an increasingly powerful communication system called
protolanguage whose utterances were either single words or else simple object–property
combinations. The early hominid line was a highly marginal one that in present-day
terms would have easily classified as an Endangered Species. Erectus’s brain was its
main advantage, and any change in its brain that offered a better chance of survival
would have quickly spread through the small population. Thus, once it was possible for
hominids to communicate using protolanguage, they surely did so. Once they did,
communication became another selection factor driving brain growth.

Indeed, once hominids started to communicate using protolanguage, communication
may even have become the dominant selection factor driving further brain development.
If so, that would give us another instance where a feature initially selected for one
function (representation) turns out to provide a second, and eventually more significant
selection advantage (communication).
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At the end of the long period of brain growth, somewhere between 75,000 and 200,000
years ago, the human brain acquired symbolic thinking. This was caused not by further
brain enlargement but by a change in its structure. The brain acquired the ability to
simulate the activation patterns normally caused by sensory stimuli, and to isolate from
the body’s motor centers the outcomes of the resulting thought processes. In short, the
brain became able to think “off line.”

Off-line thinking could have developed only after the brain had acquired sufficiently many
types to support an internal “model” of the world that was adequate for reasoning. But a
rich collection of types on its own would not be enough. The brain had to be able to
represent, internally, a sufficiently rich world structure. The “skeletal structure” of the
world that the brain simulated in order to think about the world off line is what we now
call syntactic structure, or syntax.

When you add syntax to protolanguage, you get language. Thus, in acquiring the ability
to think off line, the brain automatically acquired language. Since protolanguage was
almost certainly being used for communication by that stage, language came into being
as both a representational medium and a communicative medium.

Mathematics for free as well – almost

Just as language came for free with the acquisition of off-line thinking, so too did the
capacity for mathematical thinking.

As explained above, off-line thinking (or LI-thinking) was not a new brain process, rather
the brain developed a mechanism for running existing processes in an off-line fashion.
The novel feature was a change in the input–output connections. Viewed in terms of the
relationship between an individual and the environment, that new brain activity provided
simulations of the world. But by shifting the focus from the things in the world being
represented in the simulations to the (symbolic) representations themselves, the same
brain activity could be viewed as syntax. (Things in the world are replaced by words that
denote them: actions are replaced by the verbs that denote them, agents of actions are
replaced by subjects of sentences, objects of actions by objects of verbs, etc.) A similar
shift in perspective can give mathematical thought. The trick is to approach mathematics
in the right way.

Though modern mathematics is often presented (and taught) as a reductive system,
based on axioms, that is not how it first developed. Rather, early mathematics was
analytic, as our recent ancestors attempted to understand the world in a more precise
(and often quantitative) fashion and to be able to build things and carry out negotiations
with one another in a precise manner. Reasoning off-line about the world in terms of
agents (represented symbolically by subjects and objects) and actions (represented by
verbs) gives language. Reasoning off-line about the world in terms of arrangements,
relationships, and quantities gives mathematics.

Of course, if mathematical thinking were completely equivalent to language, no one
would have difficulty mastering mathematics, something which is very definitely not the
case. What off-line thinking gives are the capacity for language and the capacity for
mathematical thinking. In the case of language, young children are exposed to it all the
time, and pick it up with ease. (There are a number of well-studied cases of individuals
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who were not exposed to language during their formative years — roughly up to early
teens — and those unfortunate people were never able to acquire language.) With
mathematics, not only is there far less exposure to it in everyday life, there is a key
feature of mathematical thinking that makes it extremely difficult for the brain to master it:
abstraction.

I discussed the role of abstraction in learning mathematics in my book The Math Gene,
so will just summarize briefly the key points here.

A characteristic feature of the human brain that no other species seems to possess is
the ability to think about abstract entities. Many species seem able to reason, if only in a
very rudimentary way, about real objects in their immediate environment. Some,
including chimpanzees and apes, seem to have an additional ability. A bonobo ape, for
example, can carry out very limited reasoning about a single, real object it is familiar with
but which is not currently present. The range of human thought, in contrast, is so broad
as to constitute a different kind of activity altogether. We can think about practically
anything we want: real objects we are familiar with but which are not in our immediate
environment, real objects we have never seen but have simply heard or read about, or
purely fictitious objects. Thus, whereas a bonobo ape may reason about how to retrieve
a banana it just saw its trainer hide, we may think about a six-foot long, gold-plated
banana pulled along by two pink unicorns.

How is it possible to think about something that does not exist? To put it another way,
just what is the object of our thought when we are thinking about, say, a pink unicorn?
The standard answer is that the objects of our thought processes are symbols (i.e.,
things that stand for or denote other things). In The Math Gene I examine this idea in
some detail, but for now let me simply observe this: The symbols that form the object of
the thoughts of an ape or a chimpanzee are restricted to symbolic representations of real
objects in the world. On the other hand, the symbols that form the objects of our
thoughts may also represent imaginary versions of real objects, such as imaginary
bananas or imaginary horses, or even wholly imaginary objects put together from
symbolic representations of real objects in the world, such as a gold banana or a
unicorn.

I find it helpful to view abstract thought in terms of four levels.

Level 1 abstraction is where there is really no abstraction at all. The objects thought
about are all real objects that are perceptually accessible in the immediate environment.
(However, thinking about objects in the immediate environment might well involve
imagining them moved to different locations in the environment, or arranged in different
ways in the environment. Thus, I think it is reasonable to view this process as one of
abstract thought, even though the objects of that thought are all concrete objects in the
immediate environment.) Many species of animals seems capable of level 1 abstraction.

Level 2 abstraction involves real objects the thinker is familiar with but which are not
perceptually accessible in the immediate environment. Chimpanzees and apes seem
capable of thought at level 2 abstraction.

Level 3 abstraction. As far as we know, only humans are capable of level 3 abstraction.
Here, the objects of thought may be real objects that the individual has somehow
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learned of but has never actually encountered, or imaginary versions of real objects, or
imaginary variants of real objects, or imaginary combinations of real objects. Though
objects in level 3 abstraction are imaginary, they can be described in terms of real
objects — for example, we may describe a unicorn as a horse with a single horn on its
forehead. As I shall explain in Chapter 8, the ability to think at level 3 abstraction is, to all
intents and purposes, equivalent to having language.

Level 4 abstraction is where mathematical thought takes place. Mathematical objects
are entirely abstract; they have no simple or direct link to the real world, other than being
abstracted from the world.

Level 3 abstraction comes with off-line thinking. The key to being able to think
mathematically is to push this ability to “fake reality” one step further, into a realm that is
purely symbolic — level 4 abstraction. This requires effort. Mathematicians learn how to
live in and reason about a purely symbolic world. (By “symbolic world” I don’t mean the
algebraic symbols that mathematicians use to write down mathematical ideas and
results. Rather, I mean that the objects and circumstances that are the focus of
mathematical thought are purely symbolic objects created in the mind.)

To do mathematics, we need to think off-line about completely abstract objects that bear
virtually no relationship to anything in the real world — level 4 abstraction. We need to
generate brain activation patterns unlike anything that arises from sensory input. Now,
we know that practically everyone can do this, since that is precisely what is required to
have a sense of number and to cope with various abstractions that arise in modern life,
such as the concepts of marriage, ownership, or indebtedness. The mechanism is the
one we discussed earlier. We master a new abstraction by familiarizing ourselves with it
until it seems more concrete. The human brain is certainly able to do this, and most
people succeed with the most basic mathematical abstractions, namely numbers and
basic arithmetic. But far fewer people have the interest or the motivation to continue that
familiarization process into the realms of higher mathematics. Given the difficulty the
brain has with new abstractions — something it never encountered throughout
evolutionary history — it is hardly surprising that so many people never get much
beyond arithmetic.5

For the purposes of our present discussion, the key point about the account presented
above is that the brain handles abstract mathematical concepts and does mathematics

                                               
5 A second feature of mathematics that makes it hard is the degree of rigor required in its
reasoning processes. Precise reasoning is not something for which our brains evolved. But we
need to be careful in drawing conclusions from this observation. Precise, formal reasoning is not
required for mathematical discovery. Rather, its purposes are verification of things already
discovered (or perhaps suspected) and convincing others of the truth of those discoveries.

The need for formal verification is a direct consequence of the nature of mathematical
discovery. Trial and error, guesswork, intuition, and conversations with others can go on for days,
months, even years, with key steps often being carried out while the mathematician is either
asleep or thinking about something else. Although this process need not be mere haphazard
stumbling — for a good mathematician it can be highly focused and efficient — it can
nevertheless generate errors. Formal proofs are the final (and totally reliable) safeguard against
false “discoveries.”
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by utilizing brain circuits that evolved in order to think about the physical and social
environment, first on-line and then off-line. More precisely, and getting away from
metaphorical talk of “circuits” or “information processing,” the argument just presented
amounts to this:

1. Throughout its evolutionary history, the Homo brain developed activity patterns in
response to various environmental stimuli.

2. Initially, a particular activity pattern would give rise to a physical response.
3. At some stage, somewhere between 75,000 and 200,000 years ago, the brain

acquired the ability to simulate the activity patterns normally associated with input
stimuli, and to store and then reflect upon the outputs, without those outputs
resulting in bodily motor actions — what I am calling off-line thinking.

4. Because the brain activity patterns are essentially the same as those involved in
on-line thinking, off-line thinking gives the sensation of thinking about real things
in the world. (Sensations are simply manifestations of a familiar activation
pattern.)

5. Around 10,000 years ago, with societal structure reaching a sufficiently complex
state that there was need for precise means for counting property, tracking the
seasons, building houses and temples, and the like, our ancestors started to
think off-line about the world not in terms of subject–action–object (giving rise to
language) but rather quantity, arrangement, and structure (giving rise to
mathematics).

6. Again, because the brain activity patterns are essentially the same as those
involved in on-line thinking, this alternative kind of off-line thinking also gives the
sensation of thinking about real things in the world.

7. Hence, the reason why doing mathematics yields the sensation of reasoning
about concrete entities “in the world” is that such thought processes are
comprised of brain activation patterns that are associated with real world stimuli.

Conclusion

In this article I have tried to provide an answer to the questions:
1. Why does doing mathematics carry an overwhelming sensation of reasoning

about concrete objects that exist outside of our minds?
2. Why do all mathematicians converge on the same mathematics (to an extremely

high degree, and to the extent that this can be checked)?
As I stated at the outset, since these questions are subjective, it is not possible to give a
comprehensive, scientific answer. The best one can hope for (at least given the present
state of knowledge in the various relevant sciences) is a folk theory or plausibility
argument. My goal, however, was simply to provide an answer a question I believe to be
both important and interesting. I believe that the discussion I presented above meets
that target.

I definitely did not set out to try to explain how people do mathematics. Indeed, I said
little about the actual practice of doing mathematics. My focus was on the capacity for
doing mathematics and how that capacity is realized in the human brain, with a view to
explaining why doing mathematics carries the sensations of reality that it does.
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Part of my argument was that the capacity for mathematics is inherent in the capacity for
language and the capacity for off-line thinking — in fact, all three capacities are different
functionalities of the same underlying brain capacity.

Doing mathematics involves far more than simply engaging a latent capacity, however. A
characteristic feature of mathematics is that it involves precise reasoning about precisely
defined abstract entities. That is something that does not come natural to the human
brain. The brain must be trained to reason about such entities in the appropriate way. (If
experience in mathematics education is any guide, many people are, for whatever
reason, unable to complete the necessary training to the point of competent
mathematical performance.) I said nothing at all about those aspects of mathematical
thinking.
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