Concepts of knowledge in mathematical practice — a cluster analysis

Eva Wilhelmus eva.wilhelmus@uni-bonn.de University of Bonn

PhiMSAMP (Philosophy of Mathematics – Sociological Aspects and Mathematical Practice)

19th October 2007

PhiMSAMP2, Utrecht

Outline of this talk

- What's the (philosophical) issue?
- A socio-empirical study
- Cluster analysis of the data
- Philosophical interpretation
- Open questions

What's the (philosophical) issue?

• Aim:

A philosophical **theory of mathematical knowledge** that fits mathematical practice.

• First step:

Conduct an empirical study on the concept of mathematical knowledge **employed by working mathematicians**.

A socio-empirical study

• Characteristics of the project

topic	the concept of knowledge
	in mathematical practice
type	quantitative web-based survey
	with qualitative free text part
types of questions	multiple choice, ordinal variables
runtime	1 month (August '06)
target group	international working
	mathematicians
participants	newsgroup readers

A socio-empirical study (cont'd)

- The questionnaire
 - Three parts:
 - \triangleright Part I on personal data
 - ▷ Part II on abstract concept of knowledge & proof
 - ▷ Part III on knowledge ascriptions (4 scenarios)

Cluster analysis of quantitative survey data Aim

Find clusters that can be interpreted as "types of working mathematicians", corresponding to different concepts of mathematical knowledge the representatives employ.

► Step 1

▷ Choose small number of cluster variables from part III.

Find clusters that can be interpreted as different concepts of mathematical knowledge.

► Step 2

- Take larger number of cluster variables from all parts of the questionnaire.
- Sharpen cluster interpretation, try to identify corresponding "types of working mathematicians".

The concept of knowledge in mathematical practice

After his Ph.D., John continues his mathematical career. Five years after the paper was published, he listens to a talk on anti-Jones functions. That evening, he discovers that based on these functions, one can construct a counterexample to the Jones conjecture. He is shocked, and so is professor Jones.

Does John know that the Jones conjecture is false?

 \bigcirc yes \bigcirc almost surely yes \bigcirc almost surely no \bigcirc no \bigcirc can't tell

Did John know that the Jones conjecture was true on the morning before the talk?

 \bigcirc yes \bigcirc almost surely yes \bigcirc almost surely no \bigcirc no \bigcirc can't tell

Next Reset

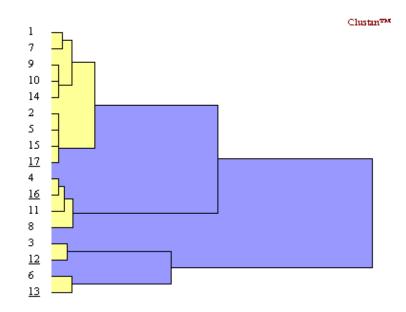
Powered by SurveySolutions: Conduct your own employee satisfaction survey

Cluster analysis of quantitative survey data (cont'd)

Step 1 — methodological remarks

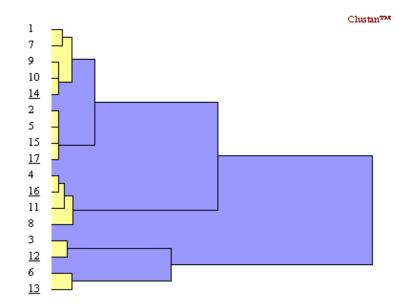
- The choice of cluster variables is theory guided!
- 3 cluster variables from a key scene in Scenario 1:

QJones6 "Does John know that JC is **true**?" asked **before** talk.

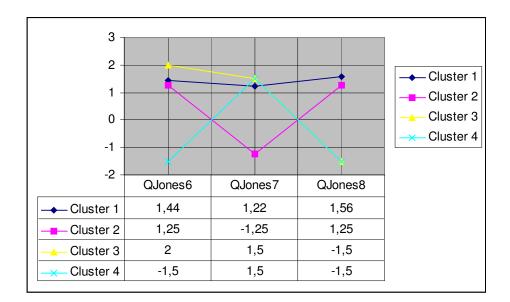

QJones7 "Does John know that JC is **false**?" asked **after** talk.

QJones8 "Did John know that JC was **true** on the morning before the talk?" asked **after** talk.

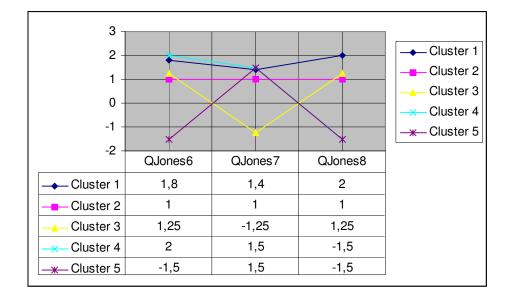
• Preparation of the data


 ▷ Pre-sorting after country – here: subgroup "Germany" (60 \ 17 cases, but marginal influence on structure of results).
▷ Ordinal variables (5 parameter values) → interval variables
▷ Eliminate listwise: missing data, 'can't tell' cases, 1 "outsider"

Cluster analysis – results


4 cluster solution

Cluster analysis – results (cont'd)


5 cluster solution

Cluster analysis – results (cont'd)

Line Plot of 4 cluster solution

Cluster analysis – results (cont'd)

Line Plot of 5 cluster solution

Philosophical interpretation of step 1 clusters

• Aim of step 1:

Find clusters that can be interpreted as **different concepts of mathematical** knowledge.

• Claim:

Some of the clusters from step 1 correspond to different philosophical theories of knowledge

▶ points to **different concepts knowledge** employed.

• Suggestion:

(regarding the 5 cluster solution):

Cluster 1 (& Cluster 2) \leftrightarrow Contextualism

Cluster 4 \leftrightarrow classical Invariantism

Outlook & open questions

• Step 2

 \triangleright Will clusters from step 1 be reproduced in step 2?

▷ Will step 2 suffice to identify corresponding "types of working mathematicians" – e.g. in terms of working habits?

• Further studies

▷ Cluster specific studies.

▷ Use survey study as a learning study.

• Philosophical lessons to learn

▷ Is there an "overall" epistemology of mathematics?

▷ On which notion of proof could it be based?

Thanks for your attention!