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1 Thick description

As this volume is concerned with sociological aspects and mathematical
practice in the philosophy of mathematics, it seems fitting to open with a
quotation from an anthropologist. “Once human behavior,” explains Clif-
ford Geertz,

is seen as [. . .] symbolic action—action which, like phonation in speech,
pigment in painting, line in writing, or sonance in music, signifies—
the question as to whether culture is patterned conduct or frame of
mind, or even the two mixed together, loses sense. The thing to ask
about [social practices such as] a burlesqued wink or a mock sheep
raid is not what their ontological status is. It is the same as that
of rocks on the one hand and dreams on the other—they are things
of this world. The thing to ask is what their import is: what it is,
ridicule or challenge, irony or anger, snobbery or pride, that, in their
occurrence and through their agency, is getting said. (Geertz, 1973,
p. 10)

One reason for opening with this quotation is that for many contem-
porary philosophers of mathematics this quotation explicates why mathe-
matical practice is incompatible with the research framework promoted by
Geertz. It’s true that mathematical practice is symbolic, and that it is
about signifying phonation, lines and gestures. But whether mathematics
is a frame of mind, patterned conduct or referenced reality (or the three
mixed together)—these questions don’t seem to lose their sense, at least
not for contemporary philosophers of mathematics.

A key to why questions concerning mathematical ontology retain a sense,
which mainstream anthropology has given up with respect to its own ob-
jects of study, is provided by Geertz’s examples: “a burlesqued wink or a
mock sheep raid”. In mathematical practice, is there burlesque and mock-
ery? And, if mathematical signs do not risk burlesque or mockery, at least
not inside mathematics, then perhaps, where mathematical practices are
concerned, there’s not much point in “asking what is getting said” in the
socio-cultural interpretive sense that Geertz promotes (which is not the
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same as the kind of interpretation offered in a maths classroom)? After all,
mathematical practices, unlike Geertz’s objects of concern, are not supposed
to be about “ridicule or challenge, irony or anger, snobbery or pride”; such
practices are never dreamt, but stand firm as rocks; and the rock-solid status
of such practices within our cultural world is something that a philosopher
should venture to explain.

For a sociologist of mathematics, however, the idea that mathematics
might be intractable to the kind of analysis that Geertz promotes would
sound absurd; mathematics is, with all things said and done, a practice that
is social. But what I’d like to do here is show that philosophers too can fol-
low Geertz’s lead and gain a great deal (my engagement with contemporary
philosophy of mathematics in this paper will be mostly through structural-
ist philosophy of mathematics). We’ll try to see what philosophical insight
into mathematical practice we gain, when we practice what Geertz calls
(following Ryle) a “thick description”, that is, when we describe mathemat-
ical practice as “a stratified hierarchy of meaningful structures in terms of
which [all sorts of signifying gestures] are produced, perceived and inter-
preted, and without which they would not [. . .] in fact exist [as signifying
gestures], no matter what anyone did or didn’t do” (Geertz, 1973, p. 7).
The purpose of this paper is to experiment with such a thick description of
a mathematical case study.

But even at this early stage philosophers may raise an objection to one
of the premises of thick description: that without “a stratified hierarchy of
meaningful structure”, social or mathematical practices “would not [. . .] in
fact exist”. This statement should not be taken lightly. Much has been said
by philosophers of mathematics about meaningless mathematical signs and
about mathematical realities that exist independently of their human, inter-
preted expression. But a thick description needn’t a-priori exclude either.
What would not exist without meaningful articulation is mathematical prac-
tice. Even a formalist’s uninterpreted mathematical sign is distinguishable
in its use by mathematical practitioners from a random line in the sand, and
is meaningfully articulated as an uninterpreted mathematical mark. And
whatever, if anything, lies mathematically beyond practice—such being may
safely rest beyond the scope of this essay as well.

Sociologists of science may raise an objection as well. They may justly
claim that there is no need to ‘experiment’ with thick descriptions of math-
ematical practice, as such descriptions have already been successfully pro-
duced. One may bring up Livingston’s ethnomethodological work on Gödel’s
proof (Livingston, 1986) and other proof practices (Livingston, 1999); Rosen-
tal’s study on the work of logicians (Rosental, 2008b) and on university logic
teaching (Rosental, 2008a); Netz’s work on Greek geometry (Netz, 1999)
and my reaction to his work in Wagner (2009a); this list is obviously just
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a small sample. These and other texts deal with mathematical writing, in-
stitutions, scholars, students, classrooms, publications, errors, competition
and more. But it is precisely their ethnomethodological, sociological and
cognitive settings that take away the specific edge in which I’m interested
here. What’s (relatively) special about the approach I take here is the spe-
cific slice I carve from the vast range opened by thick descriptions. I will
concern myself with the semiotic level of a thick description, which I feel is
particularly relevant to the interests of most philosophers of mathematics
(but which I don’t pretend is more important or more fundamental than
other levels of thick descriptions).

2 A case study

The mathematical signs that we shall study are 2-by-2 matrices. These are
arrays of four numbers ordered in two columns and two rows, such as(

1 2
3 4

)
or
(
−10 0.74
1/2 0

)
.

There are many things that a matrix can be interpreted as standing for.
One such object is a parallelogram in a Cartesian plain. Another is a linear
motion. For example, the matrix

A =
(

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)
can stand for the square whose vertices are the origin (0, 0), the point
(1/
√

2, 1/
√

2), and the point (−1/
√

2, 1/
√

2) (the fourth vertex is deter-
mined by the three given vertices and the postulation that the shape we’re
describing is a parallelogram). The same matrix A can also stand for a coun-
terclockwise rotation around the origin by an angle of 45 degrees. Another
example, the matrix

B =
( √

3/2 −1/2
1/2

√
3/2

)
,

can stand for the square whose vertices are the origin (0, 0), the point
(
√

3/2, 1/2), and the point (−1/2,
√

3/2), and also for a counterclockwise
rotation around the origin by an angle of 30 degrees.

The rule is easy: to interpret a 2-by-2 matrix as a parallelogram, set
(0, 0) and the two columns of the matrix as vertices. To interpret a 2-
by-2 matrix as a linear motion, consider the product of the matrix and
vectors in the Cartesian plane (for convenience, I will only use positive
determinant orthonormal matrices in my examples, so we shall always end
up with squares and rotations, rather than general parallelograms and linear
motions).



364 R. Wagner

So far we have polysemy—several references for the same sign. This is
indeed a prerequisite for a thick description, which is about a “hierarchy of
meaningful structures”. But in itself polysemy is not terribly interesting,
not enough for constituting a thick description, and not what I am after.
After all, we can interpret any sign as standing for any object, and there’s
nothing either thick or thin about describing this fact. That a signifier1 has
several interpretations is less than interesting in this context, unless these
interpretations interrelate.

In order to get to the point of interrelation let’s consider matrix products.
Matrix product is an operation that takes two matrices, and yields another
matrix. It’s a little more complicated than multiplying the matrices term
by term. The product of matrices(

a b
c d

)
and

(
v w
x y

)
is defined as (

av + bx aw + by
cv + dx cw + dy

)
.

Multiplying our above A and B, for example, we get

A ·B =

( √
3−1

2
√

2
−
√

3−1
2
√

2√
3+1

2
√

2

√
3−1

2
√

2

)
.

What’s important for us about matrix multiplication is that if X is
a matrix that stands for a square, and Y is a matrix that stands for a
rotation, then Y ·X stands for the square you’d get by applying the rotation
represented by Y to the square represented by X. So the product A·B above
is a matrix that stands for the square you’d get by applying a 45 degrees
counterclockwise rotation to the square represented by B.

At this point our two interpretations (square and rotation) relate to each
other and interact. Mathematical practitioners interpret signs in different
ways, and compose these interpretations. One can introduce many such
compositions. For example, on top of the above rotation-applied-to-square
interpretation of products, one can interpret the product of matrices as a
composition of the rotations they represent. The product of a matrix that
stands for a 45 degrees rotation and a matrix that stands for a 30 degrees
rotation will then stand for the combined 75 degrees rotation. Both these
interpretation are useful in practice.

One may of course come up with many different competing interpreta-
tions, but so far, the term ‘competing’ does not appear to be justified. So

1I am using here the structuralist terminology of the tradition attributed to de Saus-
sure (1966).
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far the interpretations that we presented coexist; each is viable in itself.
They do not penetrate each other, do not affect each other, and are mu-
tually neutral. Interpretations here do not have the descriptive thickness
suggested by Geertz’s term “hierarchy”. More describing is needed to get
there.

So let’s look at one more thing that we can do with matrices: raising
them to the second power. The formula is:(

a b
c d

)2

=
(
a2 + bc ab+ bd
ca+ dc cb+ d2

)
.

We can think of this operation as a function that takes a matrix standing
for a square, and yields another matrix standing for another square. We
can check and verify that the angle between the resulting square and the
x-axis is twice the angle between the original square and the x-axis.

So far we’re just adding more operations and interpreting them in coher-
ent ways. But what happens when we put things together? For instance,
what happens if we note the simple fact that X2 = X ·X? Here things start
to turn interesting. On the left hand side, our interpretation has only to do
with matrices as squares. But when we apply our previous interpretation to
the right hand side, we are forced to take the sign X, which on the left hand
side stood alone with a single interpretation, and impose upon it another
interpretation: that of a rotation.

The single left hand side X splits into two at one and the same time.
Here we don’t just have polysemy. By setting this equality and retaining our
previous interpretations we force a shift of meaning : a matrix designating a
square suddenly designates a rotation, because it happened to be raised to
the second power and set in a formula. A formal manipulation, combined
with inherited interpretations, forced a shift of meaning: from one sign and
one interpretation, we turn to a reiterated2 sign and two interpretations.
We can no longer think of the left-hand X as only standing for a square,
as we could before, because the right hand side and the connecting equality
force on X our second interpretation. The left hand interpretation was
contaminated by the excess meaning in the right hand interpretation. One
interpretation was forced on another following a formal identity.

But we have to qualify in what way this shift of meaning is forced.
Of course, we need’t have acknowledged any of the interpretations I have
suggested above. One can do matrix algebra with many other interpreta-
tions, including an interpretation that views matrices just as arrays of four
numbers. However, here we’re dealing with mathematical practice, and in
practice we interpret. Furthermore, mathematics is useful and interesting

2For a deep analysis of reiteration as constitutive of signs see (Derrida, 1988); but my
use of this term at this point is much more limited in its scope.
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because it is interpreted. And in saying that, I am not only referring to
interpretation for the purpose of application, but also to interpretation for
the purpose of generating mathematical conjectures and proofs. I know
no mathematician, who never interprets her or his symbols, when thinking
about mathematical problems. I know no mathematician, who sticks to just
one interpretation at a time.

Whenever one has an isomorphism, one has (at least) a double interpre-
tation: one in terms of the domain of the isomorphism, and one in terms of
its range. My point is that mathematical interpretations can and do bump
against each other to force shifts of meaning as above. Going from the left
hand side to the right hand side of an equality, a sign may change its inter-
pretation. And this holds not only for specific signs, but for entire domains
of knowledge as well. Analytic geometry, for example, is not simply two
independent ways of thinking put together—geometric and algebraic. It is
a novel geometrico-algebraic way of thinking, which is historically distinct,
and not reducible to a disjoint union between classical geometry and algebra
based on their intermittent use to interpret signs.3

But I want to make the plot even thicker. I want to show how interpre-
tations strike limits. For that purpose, we shall introduce one more matrix
operation: transposition, denoted by a superscript T. Its definition is(

a b
c d

)T

=
(
a c
b d

)
.

This operation is easy to interpret in terms of both squares and rotations.
If a matrix stands for a square, its transpose stands for the square obtained
by reflecting the sides of the original square across the main axes. If a
matrix stands for a rotation, its transpose stands for the same rotation in
the opposite direction.

Now there’s an easy theorem stating that (X · Y )T = Y T · XT. Let’s
try to read this theorem in the terms of our interpretations above. If we
think of Y as a square and of X as a rotation, then the left hand side makes
sense (rotate the square and then reflect its sides), but the right hand side
involves multiplying a square to the left of a rotation, which is not something
we’ve considered so far (recall that in general matrix multiplication is not
commutative, so we can’t just switch the matrices around).4 If, on the other

3A modern example for this kind of effect (an arbitrary example among unboundedly
many, included here just to give a flavour for how to generalise my claims) is the Gelfand
representation of elements of commutative C∗-algebras as functions operating on the
algebra’s maximal ideals. This isomorphism or reinterpretation is much more than two
distinct interpretations of the same signs; it is a whole that’s greater than the sum of its
parts.

4Actually, the product of positive determinant orthonormal 2-by-2 matrices is com-
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hand, we read X as a square and Y as a rotation, then the left hand side
no longer makes sense.

One way to deal with the issue is to offer another interpretation for
transposition. For instance, we can stipulate that if X is read as a square,
we should readXT as a rotation, and vice versa. Then, if we decide thatX is
a rotation and Y is a square, the left-hand side product XY yields a rotated
square, while on the right-hand side of the equality, Y T, a rotation, stands
to the left of XT, a square, and we can maintain the same interpretation to
yield, again, a rotated square. Both sides now make sense. But given this
interpretation, the equality between the two sides no longer makes sense.
Indeed, on the left hand side, we have a transposed rotated square, which
according to our interpretation of transposition must stand for a rotation.
But the right hand side is simply the application of a rotation to a square,
and is, according to our interpretation, a square. We obtain a situation
where a rotation on the left equals a square on the right, which is likely to
appear more objectionable than the simple claim that a single matrix can
represent either.

Now, when confronted with this kind of interpretive dead-end, we can
react in various ways. One reaction is to seek other interpretations for trans-
position and multiplication that work coherently together, and at the same
time allow us to retain a sense of rotating squares for application purposes.
This would be a reconstruction of interpretations. Another reaction is to
keep using our interpretation locally, that is to change our interpretations
of multiplication and transposition as we go along, even if it means that
X or transposition is interpreted in more than one way across a single line
of equality. One can refer to this as superposing interpretations. Another
strategy is to set interpretations (in terms of squares or rotations) aside
for a while, and bring them up only in specific locations, where they are
actually useful. This might be called deferring interpretation. All these
approaches have productive roles in contemporary mathematical practice.
Mathematics is practiced through and across reconstructions, superposi-
tions and deferrals of interpretations. These processes never come to an
end, because formal manipulations never come to an end. Things only get
more and more involved, and the example above only traces a few initial
steps in a rhyzomatic5 web of semiosis.

There’s yet another strategy, of course, more respectably philosophical:
to seek an all consuming ontological grounding or logical reconstruction.
But this brings us back to Geertz’s initial quotation. Mathematics does not

mutative, but if we extend our reading to general parallelograms and linear motions
commutativity is lost.

5For a discussion of the rhyzome as a model of dynamic structural relations with
unstable hierarchies, see (Deleuze and Guattari, 1987).
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require a global grounding any more than social phenomena do. Society and
mathematics work across, against and in conflict with locally reconstructed,
superposed and deferred interpretations. That mathematical marks are
there is no more questionable than the fact that winks, either burlesque or
‘serious’ are there, no more questionable than the existence of rocks and
dreams.

Indeed, I would like to emphasise how thoroughly local a local inter-
pretation can be. Here’s an example. Suppose we want to decompose the
matrix product (I −A)−1(I − 2A)−1 as a(I −A)−1 + b(I − 2A)−1, where a
and b are numbers, I is the identity matrix, and the superscript −1 stands
for matrix inversion. Suppose that we already know that the decomposition
is possible, and that the values of a and b are independent of the matrix A.
One of the most straightforward ways to obtain a and b is to multiply both
terms by (I −A) and (I − 2A), and equate them. We obtain

a(I − 2A) + b(I −A) = I.

Next we substitute I and I/2 for A. We then get the equations −aI = I
and bI/2 = I, namely a = −1 and b = 2.

The point here is to note that the manoeuvre we used to obtain the
decomposition is dodgy. In particular, we substituted for A a value, which
renders the initial expression (the product of inverses) undefined. Nev-
ertheless, this manipulation is taught and practiced widely. Experienced
practitioners will have noted the problem at one time or another, and can
easily come up with a rigorous justification (e.g., substituting (1 + ε)I for
A and letting ε go to zero, or extending the matrix algebra to a consistent
framework that sets rules for the acceptability of such a manoeuvre). But
this doesn’t mean that they will let go of the dodgy manoeuvre or refrain
from reproducing it in class for their students, with or without an explicit
acknowledgement of its dodgy bits.

This example demonstrates how a local interpretation can involve a lo-
cal logic, which is at odds with formal rigour. Reducing such local logics
to errors or shorthand for rigorous practices is a gross misunderstanding
of mathematical practice. The reproduction of such practices depends on
authority and local knowledge, rather than on a reterritorialisation into a
global logical framework. It is true that such practices can and do lead
to inconsistencies, but avoiding such inconsistencies depends on experience,
rules of thumb and gut feelings (I witnessed the use of all these expressions
in similar contexts by prominent practicing mathematicians) no less than on
rigorous reconstructions. And no philosophy of mathematics should repress
these thick descriptive facts. Latour instructed us to follow the scientists
wherever they go. Since the approach of this essay is semiotic, I suggest here
that we obey the slightly different directive of following signs wherever they
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go. And following signs does not require grounding them in an ontology or
a logic—but more on that in the next section.

Before we continue with the argument of this paper, we must acknowl-
edge the shortcomings of the above discussion with respect to our promise
to experiment with a thick description of a mathematical case study. In my
quotations from Geertz above I suppressed under square brackets, ellipsis
and a premature quotation mark Geertz’s reference to fraud, parody and
rehearsal. This suppression was a strategic device. Suppressing forgery, par-
ody and rehearsal made it easier to graft the anthropologist’s notion of thick
description onto a realm where it might seem foreign. But once the grafting
is performed, it becomes easier to force onto the surface of mathematical
practice that which we’ve been suppressing in our strategic formulation. My
purpose is not merely to analyse an existing object (mathematical practice)
with a given technique (thick description) but to synthesise them into some-
thing that can grow in somewhat less traditional directions.

So let’s see if a mathematical sign can express its meaning fraudulently,
parodically or in way of a rehearsal. This question has an easy positive an-
swer, if we consider the social framework. Teachers openly ‘cheat’ in class-
rooms (misusing signs, practicing invalid manipulations, cutting corners), as
do professionals, more or less cautiously, in more or less formal communica-
tions. Ideally, all these ‘frauds’ are correctable, and perhaps merit the title
‘white lies’ rather than frauds, but cases of scholars making unsubstantiated
false claims to gain prestige are not unheard of. As for rehearsals—students
rehearse mathematical performances when they do exercises, so that they’ll
get it right when they’re demanded to perform mathematics in exams or in
‘real life’. And it is also the case that our academic culture is replete with
parodic expressions (algebraic abstractions that are perceived as producing
no added value are a target for parody, as are tedious variations on well
known themes).

But I stated above that I am interested in the semiotic slice of a thick
description, and I should therefore look for fraud, parody or rehearsal at
the semiotic level of textual interpretation, not at the level of social context.
Indeed, suppose I make algebraic manipulations of matrices pretending that
they were real numbers, then check to verify the end result, and finally go
back to adapt the original derivation to the non-commutative ring of matri-
ces with its zero divisors. Was my first step some sort of rehearsal? When
I follow a geometric argument by thinking of a specific example, or verify it
by means of tracing a concrete diagram, am I not fraudulently exchanging
the specific for the general? And when Russell introduced his antinomy into
Frege’s notion of set, did he not follow Frege’s own rules and way of working,
bringing them to an extreme that exposed an unsubstantiated pretense in
Frege’s conduct—in other words, performed a parodying mimicry of Frege’s
practice?
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One can come up with good objections to the use of the terms ‘fraud’,
‘rehearsal’ and ‘parody’ for these examples. Indeed, a premature wholesale
endorsement of such terms for these examples would underplay the unique
features of mathematical practice. A finer reading of the above examples,
which will describe them in more accurate terms, may indeed be philosoph-
ically interesting, but I will not pursue it here. My point here is simply
that there’s enough richness to mathematical practice, even at the semiotic
level, that justifies grafting the thick description framework onto it. This
graft will undoubtedly require some adaptations, but could provide an in-
teresting and challenging analytic framework, the main advantage of which
would be its insistence on including aspects that do not fit into prevalent
logical or ontological regulative ideas. After all, as I will argue below, a
mathematics that’s not re-interpreted is a mathematics that’s more likely
to become irrelevant and outdated.

Finally, inclusion and regulative ideas bring us to the last component
of thick descriptions that will concern us here. I am referring here to the
“hierarchy” in Geertz’s “hierarchy of interpretations”. Interpretations are
not free floating products of unconstrained human thought. Interpretations
are discursive productions, invented, reformed, taught and reproduced. As
such, they depend on what Foucault calls a “principle of rarity”. This
principle reminds us that “on the basis of the grammar and of the wealth
of vocabulary available at a given period [that allow unboundedly many
combinations], there are, in total, relatively few things that are said”, and
that the discourse formed by these relatively few actually said statements
therefore

appears as an asset—finite, limited, desirable, useful—that has its
own rules of appearance, but also its own conditions of appropriation
and operation; an asset that consequently, from the moment of its
existence (and not only in its “practical applications”), poses the
question of power; an asset that is, by nature, the object of a struggle,
a political struggle. (Foucault, 1972, pp. 19–20)

In the philosophical and public discourses about mathematics some in-
terpretations are reproduced more than others. The local, unstable, perpet-
ually deferred aspects of mathematical sign interpretations are often sup-
pressed. They are assigned hardly any philosophical importance or con-
sequence. They are banished to the domain of mathematicians’ colloquial
practices, which supposedly do not reflect the respectable image of math-
ematics, Galileo’s “language of mathematics”, the language of “this grand
book—the universe” (Galilei, 1623, pp. 123–123). The grand global nar-
ratives (not without grand problems themselves) of set theory, category
theory, model and modal reconstructions and foundational ontologies are
those that gain the upper hand in the discursive struggle (which, according



For a thicker semiotic description of mathematical practice and structure 371

to Foucault, would be a “political struggle”) over philosophical and public
representations of mathematics.

I do acknowledge that most foundational theories are interesting and
productive, and can, to an extent, serve as interpretations of mathematical
practice. As such they are no less worthy than any other local interpreta-
tion, each with its various practical roles. But when the debate focuses, as
it often does, on which one of these theories is the universally fundamental
one, rather than on how they interact with each other and with more local
interpretations, one ends up with a problematic image of mathematics that
has everything to do with protecting its uniquely authoritative place in con-
temporary politics of knowledge. This leads to a tension that’s often felt
between the promise of foundational interpretations and the disturbingly in-
congruous and conflicting results of mathematical statistics and economics,
or the spin into ‘epicycles upon epicycles’ in natural science models. The
fault for these tensions is never perceived to lie with mathematics. And
indeed it shouldn’t. Because mathematics is a web of local interpretations,
and cannot support the weight of such a “grand book” as “the universe”.
What is at fault here are the great expectations projected onto mathemat-
ics by holding on to a single grand, and excruciatingly thin, description of
mathematics.6

3 Structure

In order to critically evaluate the argument above concerning local inter-
pretations and shifts of meaning, let us try to present it again with respect
to a more elementary case study. Let’s consider not matrices, squares and
rotations, but integers, rows of oranges and repetitions.

A positive integer x can be interpreted in many ways. For example, a
positive integer x can stand for a row of oranges in 1-1 correspondence with
the elements of {1, 2, . . . , x}. An integer x can also stand for the application
of repetitions in 1-1 correspondence with the elements of {1, 2, . . . , x}. We

6One may object that the thick description framework advocated here is just as foun-
dational and universal as the classical approaches, in that it claims that a hierarchy of
interpretations along the lines presented above is universally applicable to mathematics.
But a thick description is a methodology, which, when applied to different circumstances,
draws very different pictures. I do believe that mathematics is always practiced with re-
constructions, superpositions or deferrals of interpretations, but this is not a claim I seek
to demonstrate. When I find such phenomena in different mathematical case studies
and different historical periods (Gödel’s proof, contemporary graph theory and algebraic
combinatorics, classical Greek geometry and my forthcoming work on Renaissance alge-
bra) I find them expressed so differently that even the theoretical resources I use keep
changing (Wagner, 2008, 2009b,c,a). Still different expressions of such phenomena are the
multiplexity of Dynkin diagrams studied in Lefebvre (2002) and the “useful ambiguity”
that Grosholz (2007) finds in the work of Leibniz. There is something universalising in
the decree to interpret thickly, but this does not impose a single language or system of
interpretation.
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can then interpret the product x · y as x repetitions (set side by side) of
the row of y oranges. The x is interpreted as repetitions, the y as a row of
oranges, and the product is an integer that’s also interpreted as a row of
oranges. Raising to the second power can also be easily interpreted: if x is
interpreted as a row of oranges, we can interpret x2 as what we’d get by
completing the given row of oranges to form a square.

Now, when we observe an equality of the form 32 = 3 · 3, we find again
two of the phenomena encountered above. First, there’s a shift of meaning.
The term 3, a single sign interpreted on the left-hand side strictly as a
row of oranges, is forced, by way of its formal plugging into an equality, to
become two different things on the right-hand side: a row of oranges and
a bunch of repetitions. A formal manipulation, coupled with the retention
of our earlier interpretation, forced a sign to split into two signs with two
different interpretations. Moreover, while on the left hand side we have a
square of oranges, on the right hand side we have a row of oranges, which
our retained interpretations force around the sign of equality, that is, posit
as one and the same.

Now that we’re in the philosopher of mathematics’ favoured domain—
arithmetic and the integers—the philosopher’s response springs up much
more clearly and emphatically. x should not be interpreted either as oranges
or repetitions. x is, and should be interpreted as, number! And if we carry
the same logic back to the previous section, it is obvious that our matrices
should not be interpreted either as squares of as rotations. Matrices should
be interpreted as that mathematical object which matrices are. Of course,
we can apply mathematical knowledge to oranges, repetitions, squares and
rotations—but that’s at the level of application. As long as we’re doing
mathematics, a number should be a number and a matrix should be a
matrix.

Suppose we allow this marginalisation of what practitioners of mathe-
matics actually do. We are then left with the question: what are numbers
and matrices as mathematical objects? This question catapults us back
into the debate of ontologies and epistemologies of mathematics. In order
not to go again over the already infinite and outmoded debate of realism-
intuitionism-formalism, I suggest we take a detour through the more recent
ontologico-epistemological approaches grouped under the term structural-
ism, where some relatively new interesting remarks can still be made.7

The common point for structuralists is that they’re interested not in
individual mathematical objects, but in their relational aspects. This, how-

7Not that this would be too much of a detour. A quick glance at contemporary forms
of structuralism shows that, like the formalist-intuitionist-realist divide, many of them
carry the traces of mediaeval nominalist-conceptualist-realist positions on the problem
of universals (I do not mean this as a reproach, but as the expression of an important
positive link with the history of philosophy).
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ever, can be done in various different ways. One can hold a methodological
structuralist position, according to which mathematics is concerned with
what follows from axiomatically postulated relations, and set aside the en-
tire question of objects. There’s the set theoretical structuralist position,
according to which mathematics deals with what’s common to models of ax-
iomatic theories built inside set theory, but defers the question of what sets
precisely are, or solves this question non-structurally. There’s the ante-rem
structuralist, for whom structures are abstractions of mathematical models,
whose elements are ‘objects’ that have only relational properties (or at least
only relational essential properties, as one can’t avoid accidental properties
such as 4 being the number of legs that Lassie—or the dogs portraying her
in the film – had). And then there are in re structuralists, who read mathe-
matical statements not as referring to any specific object, but as quantified
over all, or all possible, models of a given structure.

This division above is borrowed from Reck and Price (2000), and is
not meant to be exhaustive or authoritative. Variants of these divisions
may be found in (Hellman, 2001) and in (Shapiro, 1997), and one should
quote at least Resnik (1997), Chihara (2004) and the nice reconstruction
of Dedekind’s view in Reck (2003)—if not for completeness, then for their
interesting highlights. Of course, there’s a lively debate concerning the pros
and cons of the various structural approaches. These tend to revolve around
issues of ontological commitments, uniqueness, individuation, the range of
quantifiers and possibilia and the elimination of ‘monsters’. Whether or not
these problems are essentially shared by all structural approaches (as sug-
gested by Shapiro) or are differently distributed between them (as claimed
by Hellman) need not detain us here. Instead, I’d like to look, again, at our
case study, in order to point out something that structural approaches tend
to leave behind.

So let’s go back to our thick description of matrices. As they share the
same signs, one could argue, matrices interpreted as squares or as rotations
share the same structure.8 Moreover, shifts of meaning and conflicts of inter-
pretations are set aside if we defer interpretation while doing mathematics,
and focus on mathematical structures instead. But the interpretations of
matrices as rotations and matrices as squares still leave their trace when
abstracting to structures. Our interpretation of matrices as rotations por-
trayed rotation-matrices as operating on squares, so the structure under
hand was conceived of as a set of functions operating on another struc-
ture. The interpretation of matrices as squares, on the other hand, did not
share this structural feature. The two interpretations are not, after all, fully
structurally equivalent.

8To be precise, one should either restrict to positive determinant orthonormal ma-
trices, or generalise to oriented parallelograms and linear motions, but I’d rather not
encumber the argument with this excess terminology.
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Now, when considering a given structure, one can always add supplemen-
tary relations. For example, compare the integers as a structure satisfying
the Peano axioms, and the same integers with the addition of the ‘bigger
than’ relation. Whether we should see these structures as identical, embed-
ded or unrelated is debated among structuralists, and might be undecidable,
at least in some versions of mathematical structuralism. If we considered
matrices-as-rotations to be the same structure as matrices-as-squares with
an additional group operation (matrix product), then we’d be in a similar
situation. But that’s not the case in the example above.

Our interpretation conceives of rotations as functions over squares. The
set-theoretic definition of a function, which involves a set of ordered pairs
of domain and range elements, means that when we go from squares to
rotations we are not concerned with taking a structure and supplementing
it with an extra relation. You can’t take just any set and ‘add’ to its
members the ‘property’ of being functions, as you would add the ‘bigger
than’ relation to a model of the integers.

There’s also a difficulty in constructing a single model for both rota-
tions and squares, despite their isomorphism. The canonical set theoretical
aversion to sets that are members of themselves prevents the construction
of functions that take themselves as arguments. So, if we interpret ma-
trices as rotations operating on squares, we can’t simultaneously use the
same model both for the rotations and for the squares, even though a sin-
gle model can model both squares and rotations operating on some other
model of squares. What I mean is that we can construct models A, B and
C, where A is a model of matrices as squares, B is a model of matrices as
rotations operating on the model A (and therefore itself another model of
squares), and C a model of matrices as rotations operating on the model B.
So the pair (A,B) can model our square-rotations combination, and so can
the pair (B,C). But strangely enough, even though the set B can model
both squares and rotations, the pair (B,B) can’t model rotations operat-
ing on squares. From a structural point of view, once a structure starts
operating on one of its isomorphs, their previous isomorphism may break
into a non-reversible hierarchy. And—here is the crucial point—whether
a structure will or will not operate on an isomorph—that is something we
needn’t decide in advance.

Of course, if we use a set theory that allows functions to operate on
themselves, or if our set theory uses ur-elements that can be reconstructed
post-hoc as sets of ordered pairs, or if we describe the operation of rotations
on squares as a binary operation rather than as a functional relation, the
problems above might go away. But I believe that a good philosophy of
mathematics should allow us to use (but not confine us to) canonical set
theory, and should not deny us thinking of rotations as functions sending
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squares to squares. And of course, even if the specific problem described
above can be avoided by some formal reconstruction, other cases of signs
standing for themselves and an excess are likely to surface elsewhere.

My claim is that even the structural interpretation of mathematical signs
may be deferred, reconstructed and superposed. Mathematics does not have
to have foundations. One can spend a lifetime using matrix algebra for
rotating squares without ever having to make decisions concerning splitting
the structure of matrices into two structures, of which one operates on the
other as functions. This splitting of a structure into two structures, ‘active’
and ‘passive’ clones, and the decision whether they are the same or not, can
sometimes be a pathology of formal reconstruction, rather than part and
parcel of mathematical practice.

Now, I have no intention of denying that some sorts of structuralism
in mathematics have contributed to mathematical development (e.g., Dede-
kind, Noether, Bourbaki). I also do not disqualify structuralism as a philo-
sophical interpretation of mathematics; indeed, structuralism is an impor-
tant catalyst of interactions between various mathematical interpretations.
Furthermore, there are mathematical practices that require the careful ar-
ticulation of function and domain structures that an analysis of the above
example would demand (set theory is, after all, part of mathematics!). But
my point is that such articulations need not be made once and for all or in
advance. When interpreting matrices, we can consider matrices-as-rotations
and matrices-as-squares as the same, as isomorphic, or as essentially hierar-
chical. And we may also defer or superpose these decisions, or reconstruct
them in hindsight (and the same goes for integers, rows of oranges and
repetitions). The self-identity of a mathematical object or model is not all
that rigid.9 This is a kind of thickness that structuralism, as well as other
universalising ontological-epistemological systems, fail to describe. This is
not reason enough to flush structuralism; but this is good reason not to let
it monopolise the field.

What underlies the discussion above, and what makes structuralism miss
that which a thick description grasps, is the way mathematical structural-
ists diagnose semiotic problems. To make this point, let’s go from contem-
porary mathematical structuralism to 20th century continental linguistic
structuralism. I acknowledge the differences in standards of articulation,
which might render even the most rigorous formulations of structural lin-
guists offered by de Saussure, Martinet, Hjelmslev, Jakobson, Trubotskoy
or Benveniste less than satisfactory for some contemporary philosophers of

9The difference and mimesis based philosophies presented in such work as Deleuze
(1994) and Derrida (1993), which problematise relations of identity and repetition, enable
critical thinking that is not committed to Aristotle’s first law of logic (A = A). The above
argument is, in fact, a restricted and elementary application of Deleuze’s interpretation
of eternal return and/or Derrida’s différance to mathematical signs.
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mathematics. I further suspect that Deleuze’s highly philosophical recon-
struction of structuralism (Deleuze, 2004), or its post-structural reformu-
lation under the title of “virtual” reality (Deleuze, 1994) would fare even
worse. But I think that mathematical structuralists do have something to
learn from the above scholars of humanities.10

A problem posed by mathematical structuralists since Benacerraf (1983)
is that of ‘too many’ models, each with its own annoying contingencies.
These should either be replaced by an ‘ur-model’, or by a logical recon-
struction of whatever’s common to them all. But this was not the problem
of continental linguistic structuralists. Their problem was not that a lan-
guage such as French had too many models, which they had to unify. Their
problem was that no individuated model of an entire language could ever
be made present. Linguistic structure

is a fund accumulated by the members of the community through
the practice of speech, a grammatical system existing potentially in
every brain, or more exactly in the brains of a group of individuals;
for the language is never complete in any single individual, but exists
perfectly only in the collectivity. (de Saussure, 1966, p. 13)

And it is the structural linguist’s task to derive the structure from these
local models that are never complete.

But the linguistic structuralists’ problem was not simply a problem of
patching together relatively consistent partial models. The different par-
tial models may be in conflict. If one considers all the different ways of
expressing a given linguistic phoneme, one gets an unbounded and fuzzy
realm of vocal manifestations. In strict physicalist terms, no two expres-
sions of a phoneme are ever the same; on the other hand, trying to define a
phoneme in terms of limits on the range of relevant physical properties (the
physical motions of the mouth and larynx, measurements of sound waves)
crashed against grey areas of intersection that were too large to ignore (e.g.,
de Saussure, 1966, p. 106). But not only the distinctions between what’s
reconstructed as different phonemes prove problematic; it also made system-
atic sense to reconstruct phonetic elements that had no vocal expression at
all! (e.g., the presentation of such a manoeuvre by de Saussure in Hjelmslev,
1966, p. 36). As de Saussure put it,

speech sounds are first and foremost entities which are contrastive,
relative and negative [. . .] In the language itself there are only differ-
ences [. . .] although in general a difference presupposes positive terms

10An anonymous reviewer suggested that in the Bourbaki group such learning did take
place. Without neglecting the differences between earlier mathematical structuralists
and contemporary structuralist philosophers of mathematics, this would make an inter-
esting topic for a historical survey, which would hopefully be valuable to contemporary
philosophy of mathematics.
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between which the difference holds, in a language there are only differ-
ences, and no positive terms [. . .] the language includes neither ideas
nor sounds existing prior to the linguistic system, but only concep-
tual and phonetic differences arising out of that system. (de Saussure,
1966, pp. 117–118)

And nowhere does this force us to hypothesise a consistent and exhaustive
model or modal interpretation of the system, however ideal.

This is not Benacerraf’s conundrum of canonizing one model from among
many candidates. This is a problem of extracting aspects that are common
to many incomplete and relatively conflicted forms of expression. My point
here is not to advocate linguistic structuralism as a philosophy of mathe-
matics (it should be quite obvious by now that I am a follower of some of
the reactions to structuralism and its rearticulations subsumed under the
title of post-structuralism). My point is that the problem of mathemati-
cal philosophy might not be that of unifying too many models, but that of
coping with the lack thereof.

The position I’m putting here is reflected by Wittgenstein. For Wittgen-
stein mathematical statements are never simply empirical descriptions of
states of affairs. Indeed, descriptions of states of affairs depend on more or
less accurate measurements. As Wittgenstein puts it,

“what reality corresponds to the proposition that if you turn a match
twice through 180◦ it gets back to its original position?” If this is a
geometrical proposition, the reality which corresponds is: if we use
a good protractor, then normally it brings us back, or more nearly
back the better it is (where “better” is determined by other crite-
ria). (Wittgenstein, Lectures on the Foundations of Mathematics:
Diamond, 1975, p. 246)

Realities corresponding to mathematical statements are always about “nor-
mally”, “nearly” and “better”. But unlike their corresponding realities or
states of affairs, mathematical statements themselves set standards. That
the measurement and implementation tools which model the standard (the
match and protractor above) are never quite up to the standard—this does
not quite undermine the standard as such. Indeed, Wittgenstein asks

If [after rotating a match twice 180◦] it didn’t point in the same direc-
tion, would you say the protractor was wrong, that it had expanded,
etc.,—or would you say that in this case twice 180◦ does not bring
you back to the same position? (Diamond, 1975, pp. 245–246)

At least there and then, Wittgenstein opts for the former response. The
statement according to which two 180◦ rotations bring us back to the same
position is a standard according to which we calibrate our instruments. No
practice of measurement or calculation can model this standard without
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risk of failure. What’s most relevant here in this (obviously very sketchy)
allusion to Wittgenstein is that, as with continental linguistic structural-
ism, we do not deal here with what’s common to ‘too many’ good models;
mathematics here is a reconstruction related to partial, substandard and
interpretation-laden practices.

The breakthrough of the continental linguistic structuralist approach
was to understand that a scientific system of rules or differences can be
valuable even if it sets an impossible standard, and even if no object, real
or ideal, in fact lives up to standard. This holds for mathematical systems
as well. They depend for their practice on bits and pieces of substandard
formal manipulations and on local, deferred, superposed and reconstructed
semantic interpretations. Philosophy of mathematics should affirm this re-
ality and weigh its consequences, rather than restrict itself to attempts at
putting together new ideal ur-models or logical interpretations that can
stand as referents or senses for mathematical signs. The latter activity can
indeed be valuable, but it should be complemented by thick descriptions
of mathematical practice, and should not presume to dominate or suppress
such descriptions as philosophically inferior.

4 Deferring interpretations

I’d like to conclude with some clarification concerning the concept of inter-
pretation that I have been discussing, and how it necessarily thickens the
description. I have insisted that in mathematical practice interpretations of
signs are subject to local practices of deferral, reconstruction and superpo-
sition. A quick look into the term ‘superposition’ will help us clarify what
interpretation is like.

I borrow the term superposition from physics. This borrowing is ex-
tremely loose, and its point is not so much to force an analogy as to learn
from its limitations. When certain aspects of an object cannot be reduced
to a single state (say, a specific location, or a specific spin), we say that the
object is in a superposition of states. But to establish superposition it is not
enough that we simply don’t know the object’s state. It is required that we
have some testimony to its plurality of states through observed phenomena
(such as interference), and that we can learn something about the distri-
bution of those states by measurement. Interference testifies to an object’s
plurality of states by making it hard to explain the interaction of objects
under the hypothesis that each has only one (possibly unknown) state. To
explain the interaction one needs (or finds it useful) to assume that the
plurality of states of each object influences the results of the interaction.
The double-slit experiment is the obvious paradigm.

Can we think of a mathematical sign as being in a superposition of
various interpretations, and point out moments of interference? Consider
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the theorem (X · Y )T = Y T · XT concerning products of matrices, and
our interpretation of the product of 2-by-2 matrices as rotations applied to
squares. We’ve already noted that, if the left-hand factor of the product
should be interpreted as a rotation and the right hand side as a square,
then only one side of the equality can make sense: the left-hand side of the
equality if X is the motion, the right hand side if Y is the motion. In order to
maintain both the equality and our interpretation, we might want to allow
X and Y to be in a superposition of rotation and square interpretations,
and consider the equality as an indication of interference.

Of course, one can conclude that this problem rules out the interpre-
tation of matrix product as rotation applied to square. But that would
be an overkill, and annoying news for people who use this interpretation
in technical applications of geometric linear algebra. But I’m not going to
defend this notion of interference of interpretations against such overkill,
as my point is not to press the analogy between superposition of physical
states and the superposition of interpretations. I am more interested in
following the concept of measurement as it goes through the ‘superposition
of interpretations’ metaphor.

In the quantum context, measurement is a process that collapses a su-
perposition of states to a single state. In the context of interpreting signs we
may think of committing a sign to a single interpretation as collapse. From
a superposition of interpretations we collapse the meaning of the mathe-
matical sign onto a single sense and referent. We may have played with
our matrices and their possible meanings, we may have put them through
various formal manipulations that effected shifts of meanings, but finally
comes the moment of decision. Here, in this application of the bottom line
of our reasoning, this or that specific matrix must finally be used in a solid,
well-defined particular way.

But is such a collapse necessarily definitive? The obvious objection is our
ability to go back to the mathematical text and interpret or use it differently.
When a text has been interpreted, it has never been interpreted once and
for all; it can always be re-interpreted, and that goes for a mathematical
text as well—“a written sign carries with it a force that breaks with its
context” (Derrida, 1988, p. 8).

This objection, however, is perhaps too easy. Can’t we say at least that
at the moment of interpretation or application there is a definitive collapse
into a single interpretation? Well, suppose a programmer used a certain
matrix to designate a certain square, which will be displayed and rotated
on the screen. Has interpretation come to an end? Not quite. The code
is to be processed by a certain compiler, then executed on a certain ma-
chine, and eventually output onto a certain medium. Anyone experienced
with the endless machine specific variations that can ensue is well aware
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that interpretations have not yet come to an end. And when we finally
observe the square rotate on some LCD screen, have interpretation now fi-
nally come to an end? They have not, at least as long as someone is there
to observe the rotating square and interpret its motions: experience them
aesthetically, derive information from the display, act on whatever the ro-
tating square prompts them to do, etc. And things needn’t end there. This
experience may be remembered, recalled, evaluated, recounted, recontex-
tualised; it may instruct us, reproduce itself in future experiences, enter
chains of interpretive expectations and habits; in short, interpretations, like
explanations, need never come to an end. They might factually come to an
end, but they never need end at any given present moment of time.

But the above example takes our interpretation outside mathematics. Is
it not the case that as long as we stay inside mathematics, interpretations
must eventually come to an end? In fact, it is never finally decided when
an interpretation carries a sign outside mathematics. When I interpret a
matrix as a square, is the square no longer mathematical? It depends. A
square may well be an empirical object of observation. But it may just as
well be a mathematical object.

Mathematical propositions might quite well be expressed in terms of
people, houses, or what not. The word “men” may come in and it
may still be mathematics; and the word “lines” may come in and it
may not be mathematics. (Diamond, 1975, p. 116)

For Wittgenstein, whether the square (or men, or a line) is inside or
outside mathematics depends on how we operate with it. As we observed
above, if our dealings with the square set standards (say, if we state that the
square’s diagonal divides it into two congruent parts, regardless of what em-
pirical measurements suggest), then the square is still mathematical. If our
dealings with the square are more empirical or pragmatic, then, according
to Wittgenstein, we’re no longer inside mathematics. The catch is that “of
course the sentence ‘The figure I have drawn here [. . .]’ may be used either
mathematically or non-mathematically” (Diamond, 1975, p. 117). There’s
nothing in the square itself that forces us to use it either way, that forces
us in or out of mathematics. Our interpretation may oscillate in and out
of mathematics in ways that might question the topology of these in/out
relations.

Unlike the apparently once-and-for-all quantum collapse, mathematical
interpretations do not mark a clear boundary of final interpretation or a way
out of mathematics. Furthermore, unlike quantum superpositions, which
superpose a well defined space of once-and-for-all given states, mathematical
interpretation does not take place in a closed and well articulated domain.
Mathematical reconstruction of interpretation is an open ended process.
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This open-endedness is not the margin of mathematics. It is its decen-
tred centre—a condition of possibility that is not reducible to a stable core.
Even if mathematics is grasped as geared not towards practice, but towards
some ideality, a mathematics that cannot be reinterpreted is a mathematics
that is bound to become outdated, once travelling—historically, culturally,
intersubjectively—across our life worlds renders a given interpretation ob-
solete (a glimpse at the kind of algebraic geometry that dominated 19th

century professional mathematical literature will provide a fine instance of
this claim).11

Reducing mathematics from a thick practice of interpretation to a struc-
tural ontological or logical core prevents philosophers of mathematics from
acknowledging its plurality.12 By confining mathematics in such manner,
scholars actually prevent mathematics from attaining its cross historical
and cross cultural ideality—an ideal openness to reinterpretation. Indeed,
such confinement makes mathematics inaccessible to the many, who would
otherwise access mathematics through the thick of different interpretations.
Conceptually unified and confined, mathematics might not survive the his-
toric obsolescence of our fashions and conceptual schemes.

As Cantor stipulated “the essence of mathematics lies precisely in its
freedom” (quoted in Reck, 2003, p. 392). To maintain this freedom is to
affirm the thickness of the scientist’s reinterpretation of mathematical signs
across life worlds and across moments of her own life. To maintain this
freedom, even as a freedom to idealise, is to acknowledge the constitutive
role of locally superposed, reconstructed and deferred interpretations in
the production, transmission, reformation and sustenance of mathematical
signs. Without such reinterpretation mathematics might not survive long
enough to become ideal.

11This interpretation relates to Derrida’s interpretation of Husserl’s work in Derrida
(1989). Indeed, even for an ideally oriented thinker such as Husserl, for whom mathe-
matics is a “product arising out of an idealising, spiritual act, one of ‘pure’ thinking”,
mathematics must derive from “factual humanity and [the] human surrounding world”
(Husserl, 1939, p. 179). Since this is a changing factuality and world, not only his-
torically, but culturally and intersubjectively as well, a scientist, who tries to impose
an ‘ur-interpretation’ on mathematics (structural or other), detaches mathematics from
worldliness in general, and ties it down to “something valid for him as a merely fac-
tual tradition”. His subsequent interpretation therefore “would likewise have a merely
time-bound [or community bound] ontic meaning: this meaning would be understandable
only by those men who shared the same merely factual presuppositions of understanding”
(Husserl, 1939, p. 179).

12Greiffenhagen and Sharrock (2006) provide a recent typical example of this ma-
noeuvre: the authors hack off all cultural or historic differences between mathematical
practices, interpretations and systems as minor and non essential, avoid the task of articu-
lating what it is—if anything—that survives this hacking, and conclude that mathematics
is highly non-relative.
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