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1 Introduction

A recent debate has focused on different methodological principles underly-
ing the practice of axiom choice in mathematics (cf. Feferman et al., 2000;
Maddy, 1997; Easwaran, 2008). The general aim of these contributions can
be described as twofold: first to clarify the spectrum of informal justification
strategies retraceable in the history of mathematical axiomatics. Second,
to evaluate and to philosophically reflect on the actual reasoning involved
in the introduction of new axioms in mathematical practice such as large
cardinal axioms in set theory.

The most extensive treatment of these matters for the case of set theory
can be found in (Maddy, 1997). Her philosophical discussion of axiom
choice covers both of the mentioned approaches, i.e., it is both descriptive
in reconstructing the justification types in early axiomatic set theory as
well as normative in devising “methodological maxims” for the evaluation
of present set theoretic axiom candidates. More specifically, Section 1.3 of
her book provides a historical survey of the arguments given for ZFC by
Zermelo, von Neumann, and Fraenkel (among others) with the intention
“to explicate and analyze its distinctive modes of justification” given there
(Maddy, 1997, p. 72). In the final two sections of her book (Sections 3.5 and
3.6), Maddy in turn devises “a naturalistic program” for discussing more
recent axiom candidates (starting from Gödel’s axiom of constructibility to
large cardinal or determinacy axioms) intended to model the “justificatory
structure of contemporary set theory” (Maddy, 1997, p. 194).

In this paper I attempt to take up Maddy’s historical discussion by draw-
ing attention to a historical episode from early axiomatic set theory centered
on Abraham Fraenkel’s axiom of restriction (“Beschränktheitsaxiom”) (in
the following AR). The axiom candidate was first introduced by Fraenkel
in the early 1920s and can be considered as a minimal axiom devised to
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express a restriction clause, more specifically a minimal condition for any
set model satisfying ZFC. His attempts to devise such a restriction clause
on set models varied in the course of his intellectual development and even-
tually led to different, partly independent versions of restrictive axioms for
set theory. Now, all of these axiom candidates are considered in retrospect
as “ad hoc devices” due to their “vague, metatheoretic” character without
any real, remaining significance in modern axiomatic set theory (cf., e.g.,
Kanamori, 2004, p. 515) (cf. Section 5). Nevertheless, I will argue that
Fraenkel’s attempts to introduce such a minimal axiom remain interesting
from an historical point of view since the axiom takes a central and so far ne-
glected place in a broader discussion on the (non-)categoricity of set theory
and its role as a foundational discipline in mathematics. Moreover, closer
study of it will also prove to be instructive for the general methodology of
axiom choice given the specific justifications that Fraenkel provides for his
axiom candidate.

The paper has two main aims. The first is to reconstruct the different
arguments for AR in light of Maddy’s account of extrinsic (in contrast to
intrinsic) justification. Given Fraenkel’s case, I show that one can expand
Maddy’s analysis by a new type of extrinsic argument that concerns the
metatheoretic property of categoricity of the resulting axiomatization. The
second aim is to analyze AR in terms of Maddy’s “methodological maxims”,
namely Unify and Maximize, devised for axiom choice in contemporary
set theory (cf. Maddy, 1997, pp. 208–215). I argue that AR deserves closer
attention since—being a minimizing principle for the set theoretic domain—
it is prima facie diametrically opposed to Maddy’s second principle that
calls for a maximization of the set theoretic domain. This—given the overall
viability of Maddy’s principles - could be taken as an additional argument
against the legitimacy of AR in axiomatic set theory. However, I argue
that a direct evaluation of Fraenkel’s axiom candidate in terms of Maddy’s
maxims is problematic since they are motivated by different conceptions of
set theory as a foundational enterprise.

The paper is organized as follows: I present a brief overview of differ-
ent types of axiom justification described in (Maddy, 1997), focusing on
types of extrinsic, non-epistemic arguments she identifies in the early ax-
iomatization of set theory (Section 2). Her account of extrinsic evidence is
compared to the different lines of argumentation Fraenkel develops for his
axiom candidate (Section 3). His main motivation for AR is a metatheo-
retic consideration, i.e., to restrict the set theoretic universe to his intended
model of ZFC and thereby to render his axiom system categorical (Section
3.1). I discuss different proposed versions of AR intended to achieve this
categorical axiomatization (Section 3.2). Further, I suggest that Fraenkel
seems to develop his views on minimal models and the intended effect of
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AR in close analogy to Dedekind’s approach to defining sets via closure
principles (Section 4). In Section 5 a number of objections directed against
AR by Baldus, von Neumann, and Zermelo from the late 1920s will be dis-
cussed that eventually resulted in a fundamental shift in Fraenkel’s own
understanding of his axiom candidate. Fraenkel’s response to these objec-
tions and the resulting new versions of AR will be discussed (Section 6).
Finally, I compare Fraenkel’s different versions of AR with Maddy’s natu-
ralistic method of axiom choice, specifically with her maxims Unify and
Maximize, and discuss whether such an evaluation can be justified (Section
7).

2 Maddy on extrinsic justification

Maddy’s historical survey of the axiomatization of set theory and the dif-
ferent motivations for the axioms of ZFC is based on the distinction (an-
ticipated in Gödel, 1964) between two types of justification. In the case
of extrinsic justification, an axiom is assessed in terms of its theoretical
fruitfulness, i.e., with an eye to its intended consequences for the resulting
theory. In the case of intrinsic justification, an axiom is defended in terms
of the intuitive nature of the properties it is supposed to express (cf. Maddy,
1997, pp. 36–37). The two kinds of arguments are commonly associated with
different types of mathematical axioms: structural axioms of the “working
mathematician” (e.g., the axioms of rings, groups etc.) and foundational ax-
ioms concerning structures that “underlie all mathematical concepts” (e.g.,
the Peano axioms for arithmetic and ZFC for set theory) (cf. Feferman, 1999,
p. 3). Structural axioms are often considered to be justifiable on extrinsic
grounds comparable to the experimental testing of hypotheses in the natural
sciences. Foundational axioms in turn are attributed an entirely different
status. Their justification is often based on intrinsic considerations, either
by reference to certain epistemic norms (such as those of intuitiveness, ob-
viousness, immediacy, and naturalness) or by reference to a pre-axiomatic
conception of the subject matter, i.e., the mathematical structure the axiom
in question is supposed to capture.1

However, Maddy succeeds in showing that the assumed link between
foundational axioms and intrinsic arguments is not exclusive. Her survey of
the practice of axiom choice in set theory identifies a number of genuinely
extrinsic considerations laying the ground for the foundational axioms of

1Numerous examples from the history of axiomatic mathematics suggest such a re-
lation between foundational axioms and intrinsic arguments. In discussing the (episte-
mological) primacy of the Peano axioms over ZF, Skolem argues that in contrast to the
latter the former are “immediately clear, natural and not open to questions” (Skolem,
1922, p. 299). In opposition to this, Gödel—in a well known passage—describes a faculty
of “intuition” as a sufficient “criterion of truth” for the set theoretic axioms. (Gödel,
1964, p. 271)
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ZFC.2 Moreover, she points out that the extrinsic arguments given there
are explicitly non-epistemic in character. In several cases (most prominently
in Zermelo’s defense of the axiom of choice, cf. (Maddy, 1997, p. 56) the
motivation for the acceptance of an axiom does not depend on its intuitive-
ness but rather on its theoretical consequences for mathematics.3 Naturally,
since ZFC is primarily considered a foundational theory, these consequences
have to be closely tied to what Maddy describes as its “foundational goal”
within mathematics. Her specific understanding of this goal is clearly non-
epistemological: in contrast to a stronger “foundationalist” reading of ZFC
in terms of an ontological reduction that “reveals the true identities of [. . .]
mathematical objects” or the reduction to an epistemologically secure ba-
sis, set theoretic axioms in her “modest” version of foundations share no
“preferred epistemological status” (cf. Maddy, 1997, pp. 24–25).4 Instead,
they provide a fruitful codification of all other branches of mathematics by
allowing a set theoretic “representation” of all other mathematical entities
and structures (cf. Maddy, 1997, pp. 25–26). By this,

[. . .] vague structures are made more precise, old theorems are given
new proofs and unified with other theorems that previously seemed
quite distinct, similar hypotheses are traced at the basis of disparate
mathematical fields, existence questions are given explicit meaning,
unprovable conjectures can be identified, new hypotheses can settle
old problems, and so on. (Maddy, 1997, pp. 34–35)

For Maddy, it is the sum of these theoretical virtues that amount to the
foundational goal of ZFC. Concerning the question of axiom justification,
she argues that the capacity of a particular axiom to contribute to these
theoretical objectives (and thus to the overall success of the foundational
discipline) can be taken as direct extrinsic evidence for it: “[. . .] I see the
effectiveness of an axiom candidate at helping set theoretic practice reach its
foundational goal as a sound extrinsic reason to adopt it as a new axiom”.5

2Cf. (Feferman et al., 2000) for an interesting discussion between Feferman and Maddy
on the intrinsic/extrinsic distinction and its bearing on Feferman’s classification of math-
ematical axioms mentioned above (Feferman et al., 2000, pp. 416–419).

3Maddy refers to Russell (1973) for an early methodology of axiom choice along similar
lines. In fact, in his lecture, Russell proposes a “regressive method” for justifying logical
axioms (such as the axiom of reducibility) without any direct intrinsic support by a
kind of probabilistic confirmation through its “obvious” consequences: “Hence we tend
to believe the premises because we can see that their consequences are true, instead of
believing the consequences because we know the premises to be true.” (Russell, 1973,
pp. 273-274)

4For a comparable account of (higher-order) logic as a non-foundationalist foundation
for mathematics, cf. (Shapiro, 1991).

5(Feferman et al., 2000, p. 418); there is a certain tension between Maddy’s account
of the “foundational goal” of ZFC and Feferman’s account of foundational axioms. For
her own evaluation of this relation (cf. Feferman et al., 2000, pp. 417–419).
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One central criterion of success that allows the assessment of an indi-
vidual axiom concerns set theory’s unifying power. Its strong unifying role
is due to the creation of a single domain of discourse to which all of math-
ematics is reducible:6

The force of set-theoretic foundations is to bring (surrogates for) all
mathematical objects and (instantiations of) all mathematical struc-
tures into one arena—the universe of sets—which allows the relations
and interactions between them to be clearly displayed and investi-
gated. (Maddy, 1997, p. 26)

Note that one central implication of this picture of set theoretic unification
through a “unified arena” is that a specific conception of the domain of
set theory, i.e., the intended universe of sets, becomes a central issue in
the foundational goal. Now, Maddy’s historical discussion of extrinsic ar-
gument types for the axioms of set theory focuses on the standard axioms
of ZFC. What is not mentioned in her survey, however, is that there was
already a strong and ongoing debate throughout in 1920s on how to con-
ceive this universe of sets and characterize it axiomatically. In the course
of different attempts to fix a domain of set theory that is capable of provid-
ing such a “unified arena” for mathematics, one specific axiom candidate,
namely Fraenkel’s axiom of restriction stands out as the most prominent
contribution. In the remaining sections of the paper I will focus on this
specific episode in the early history of the axiomatic set theory in general
and Fraenkel’s axiom candidate in particular. It will be shown that one
can identify an extrinsic argument in his remarks on set theoretic restric-
tion based on a similar motivation for unification not discussed in (Maddy,
1997).

3 Fraenkel’s axiom of restriction

In the early 1920s, Fraenkel suggested two axioms to be added to the axiom
system presented in (Zermelo, 1908b): the axiom of replacement, now a
standard axiom of ZF, as well as the lesser known axiom of restriction
(AR). The latter was basically devised to express a restriction clause, more
specifically a minimal condition for any set model satisfying the axioms
set up by Zermelo. In what follows I will give a brief reconstruction of
the evolution of Fraenkel’s thought on the notion of restriction during this
period.

The first mention of AR can be found in an article titled “Zu den Grund-
lagen der Cantor-Zermeloschen Mengenlehre” in Mathematische Annalen

6Compare also the following passage: “One methodological consequence of adopting
the foundational goal is immediate: if your aim is to provide a single system in which
all objects and structures of mathematics can be modeled or instantiated, then you must
aim for a single, fundamental theory of sets.” (Maddy, 1997, pp. 208–209)
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from 1922 (Fraenkel, 1922b). Fraenkel’s motivation for adding the axiom
candidate is mainly pragmatic and explicitly concerns set theory as a foun-
dational discipline. He states that “Zermelo’s concept of set is more com-
prehensive than seems to be necessary for the needs of mathematics [. . .].”
(Fraenkel, 1922b, p. 223) Fraenkel goes on to mention two types of possible
sets in the “domain” (“Grundbereich”) of set theory that are consistent with
the existing axioms, but are irrelevant for mathematical purposes. The first
are “non-conceptual” sets consisting of physical elements. The second are
non-well-founded sets, i.e., sets with infinite membership chains originally
specified by Mirimanoff (1917). From their possibility within Zermelo’s
axiomatization, Fraenkel draws an interesting consequence for its general
status:

Whereas sets of the first as of the second kind are not necessary for set
theory considered as a mathematical discipline, it in any case follows
from the fact that they have a place within Zermelo’s axiomatization
that the axiom system [. . .] does not have a “categorical character”,
that is to say it does not determine the totality of sets completely.
(Fraenkel, 1922b, p. 234)

Categoricity is understood here as a “complete” characterization of the do-
main of sets. In an added footnote, Fraenkel refers to one of his earlier
works on number theory, more specifically on different axiomatizations of
p-adic numbers, for an informal definition of categoricity based on Veblen’s
notion of a “categorical set of postulates” (Fraenkel, 1911, p. 76).7 A more
structured presentation of his arguments for AR can be found in the second
edition of his monograph Einleitung in die Mengenlehre (Fraenkel, 1924).
Here, the introduction of the additional axiom leads to a “simplification of
the set theoretic edifice” by ruling out non-well-founded numbers without
losing its significance for mathematics due to the fact that “all mathemati-
cally relevant sets can [. . .] be saved with such a restricted axiomatization.”
(Fraenkel, 1924, p. 218) As a second independent argument the property
of categoricity is mentioned: “Moreover, without such a restriction it is
not within reach that our axiom system captures the totality of admissible
sets completely as is desirable for the construction of every axiomatization.”
(Fraenkel, 1924, p. 218) Two short remarks are in order here. First, one
can identify at least two related but non-identical objections against Zer-
melo’s original axiomatization here: the non-eliminability of extraordinary
sets that are redundant for the formalization of mathematics on one hand.
On the other hand, the non-categoricity of Zermelo’s proposed axiom sys-
tem is considered as a general theoretical deficiency of any axiomatization.8

7On Veblen’s understanding of categoricity and a closer comparison to the modern
notion, cf. (Awodey and Reck, 2002, pp. 22–25).

8This second point is further highlighted in a passage in his published lectures from
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Note second that the two mentioned issues, i.e., the applicability of set the-
ory to mathematics and the axiomatic property of categoricity, are treated
independently here. One can find no explicit remark about the possible
implications of the categoricity of the extended axiom system ZF + AR for
its foundational goal in mathematics. I will return to this point in the last
section.

3.1 The (non-)categoricity of set theory
In the second edition of Einleitung we also find an explicit definition of
the notion of categoricity as one type of completeness of an axiom system
referred to in the argument above:9

According to it an axiomatic system is called complete, if it deter-
mines uniquely the mathematical objects governed by it, including
the basic relations between them, in such a way that between any
two interpretations of the basic concepts and relations one can effect
a transition by means of a 1–1 and isomorphic correlation. (Fraenkel
1924, quoted from Awodey and Reck 2002, p. 30)

For the specific case of set theory the following explication is given:

If the axiom system is complete and one has chosen in two distinct
ways, each in accord with the axioms, an interpretation of the concept
of set—in particular also its extension—and of the basic relation a ∈ b,
then it has to be possible to maintain a correlation between the sets of
the one interpretation and those of the other such that first, to each
set of the first interpretation corresponds one and only one [. . .] set of
the other interpretation and vice versa and that secondly, if a ∈ b is a
valid relation in the first interpretation [. . .] then the relation a′ ∈ b′
also holds for the sets a′ and b′ that have been assigned to a and b in
the other interpretation and vice versa. (Fraenkel, 1928, p. 228)

This is probably the first application of the concept of categoricity via iso-
morphism to axiomatic set theory. Nevertheless, his presentation remains
sketchy compared to modern standards. The central concept used in these
remarks about the conditions of categoricity for set theory is the notion of
an isomorphic correlation between set models. In modern terminology such

1925: “It means more than a mere flaw of our axiom system that the totality of all
possible sets is not unequivocally fixed but that instead there are always narrower and
more comprehensive interpretations of the concept of set that remain compatible with
our axiom system.” (Fraenkel, 1927, p. 101)

9For Fraenkel’s treatment of three types of completeness, i.e., semantic completeness,
syntactic completeness and categoricity, as well as their relationship and later reception,
mainly by Carnap, cf. (Awodey and Reck, 2002).

In the third edition of Einleitung the equivalence of the type of completeness given
in the quotation with the notions of “categorical” (Veblen) and “monomorph” (Feigl-
Carnap) is explicitly stated (cf. Fraenkel, 1928, p. 349).
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a correlation is taken as a 1–1 mapping between two set models M and
N that is structure-preserving, i.e., as a function f mapping M one-to-one
onto N such that for two binary relations F and G (on M and N respec-
tively), for all members a and b of M , F (a, b) iff G(f(a), f(b)). However,
in the 1920s, Fraenkel does not yet provide a comparable notion of isomor-
phism for set theory.10 Nor does he get more explicit on the kind of the
formal background language in which his axiom candidate and the notion
of isomorphism should be cast. It should be stressed here that Fraenkel’s
remarks on AR and the categoricity of axiom systems from this period are in
general presented informally. There is no attempt to provide a formulation
of the axiom candidate in a formal symbolism such as Russell’s type theo-
retic language commonly used at that time. This lack of formalization makes
Fraenkel’s claim about the categoricity of his axiomatization ZF+AR debat-
able from a modern point of view. If the axiom system ZF (specifically the
axiom of replacement) is thought to be presentable in first order logic, then
the expanded ZF+AR fails to be categorical due to the Löwenheim- Skolem
theorems. Fraenkel’s claim is only valid if a second-order axiomatization is
assumed.11 However, this fact is simply not noticed in his writings on the
categoricity of set theory from that time. Despite discussing the Skolem
paradox in the second and third edition of Einleitung, Fraenkel seems to be
simply ignorant of its impact on his own project of providing a categorical
axiomatization.12 (I will return to this point in Section 6.2)

It is also in the third edition of Einleitung (Fraenkel, 1928) that one
can find an interesting remark concerning his understanding of the concept
of isomorphism. Following a more general discussion of the categoricity of
axiom systems, he adds in a footnote:

The expression “isomorphic” has a considerably more general sense
than is usually common [. . .]. In fact the isomorphism is applicable
to arbitrary relations, not only to those tertiary and n-ary relations
denoted as “operations”.13

10An alternative notion of isomorphism for sets had already been introduced some
years before Fraenkel’s version in (Mirimanoff, 1917). His definition is based on the
simple notion of equivalence between sets and does not take into account a correlation
between set models (cf. Mirimanoff, 1917, p. 41). For an early discussion of this definition,
cf. (Sierpiński, 1922).

11Compare (Shapiro, 1991, pp. 85–86).
12van Dalen and Ebbinghaus (2000) retrace the different receptions of the Skolem

paradox by Zermelo, von Neumann, and Fraenkel in the 1920s. For the latter’s case they
state that “the role of logic in set theory was not quite clear to Fraenkel”. They in my
mind correctly conclude that the impact of logical formalization on his categoricity claim
transcended his “expertise” on logical matters in that period (van Dalen and Ebbinghaus,
2000, p. 148).

13(Fraenkel, 1928, p. 349); it was due to Rudolf Carnap who seems to have followed
Fraenkel’s informal remarks on a generalized concept of isomorphism to develop a formal
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Irrespective of this, Fraenkel holds that Zermelo’s axiomatization from 1908
is non-categorical in the sense specified above. This was a commonly ac-
knowledged position in the 1920s shared by such eminent figures such as
Skolem, von Neumann and Zermelo himself. Subject to debate were the
possible reasons for this fact and whether Zermelo’s original axiomatization
could be rendered categorical by adding additional axioms.14 As we have
seen, according to Fraenkel’s view anno 1924, the non-categoricity of Z is
mainly due to the non-eliminability of “extraordinary sets” by the existing
axioms. This in turn is due to the fact that the existential axioms, i.e.,
the empty set axiom and the axiom of infinity, do not restrict the domain
of sets whereas the restrictive axioms like the axiom of separation are not
restrictive enough to yield an “unequivocal specification” of the concept of
set. As a solution to this Fraenkel proposes to introduce his AR which is
described in analogy to Hilbert’s completeness axiom in geometry:

[. . .] as is the case there, the mentioned deficiencies can be remedied by
setting up a [. . .] last axiom, the “axiom of restriction” that imposes
on the concept of set, or more appropriately the domain [of sets], the
smallest extension compatible with the remaining axioms. (Fraenkel,
1928, p. 234)

An alternative definition of the axiom can be found in (Fraenkel, 1924):
“Aside from the sets imposed by the axioms [of Zermelo (1908)] there exist
no further sets.” (Fraenkel, 1924, p. 219) Now, the underlying motivation
for introducing AR is clearly extrinsic in Maddy’s more general spirit. The
intention behind both versions of the axiom is evident: to rule out non-
intended and non-well-founded sets by restricting either the interpretation
of the concept of set or the domain of set and, by doing so, to render the
axiom system categorical.

3.2 Versions of restriction
Fraenkel’s early elucidations of the intended effect of AR do not go beyond
the level of informal remarks. The most detailed exposition can be found
in the article “Axiomatische Begründung der transfiniten Kardinalzahlen”
(Fraenkel, 1922a) in which he develops an axiomatization for cardinal num-
bers. Here Fraenkel formulates two versions of AR that prove to be instruc-
tive for the case of standard set theory. According to the first, restriction
is considered as a minimality condition on sets: There exist no sets apart
from the sets implied by the given axioms. The second reading is more
interesting, since it sketches the intended effect of the axiom. According to

definition of a “n-stage isomorphism correlator” for a type-theoretic language in his
works on a general methodology of axiomatics. Cf. (Bonk and Mosteŕın, 2000; Carnap
and Bachmann, 1936).

14Compare, e.g., (Kanamori, 2004, pp. 515–516) and (Shapiro, 1991, pp. 184–189).
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it AR can be viewed as imposing a minimal model for the axiom system: “If
the domain (Grundbereich) B contains a smallest submodel (Teilbereich) B0

satisfying the axioms [. . .], then B is identical with such a smallest submodel
B0.” (Fraenkel, 1922a, p. 163) This in effect rules out the existence of any
possible submodel of B0 that also satisfies the axiom system. The second
definition is followed by a footnote concerning the method of constructing
such a minimal model:

As is usual, a smallest submodel of the indicated character is to be
understood as a model that is the intersection of all submodels of B
with the property in question and that also possesses the property
itself. (Fraenkel, 1922a, p. 163)

Two claims are made here: first that a minimal model for Z can be conceived
as the intersection of all possible models satisfying the axioms. Second, if
such a minimal model exists, the extended axiom system ZF + AR, i.e.,
the Zermelo axioms plus replacement and restriction, is categorical. Now,
Fraenkel does not get more explicit about his conception of the domain or
the models of set theory. How are these notions conceived? In approaching
this question it will prove to be fruitful to take into consideration Fraenkel’s
intellectual background. Specifically, a closer look at Richard Dedekind’s
methodological innovations concerning set formation and mapping in Was
sind und was sollen die Zahlen from 1888 will be helpful for the understand-
ing of how Fraenkel’s ideas behind restriction might have evolved.

4 Dedekind’s heritage

Two interpretive issues concerning AR are in need of further consideration.
First, how exactly did Fraenkel conceive the intended restrictive effect of
his axiom on the possible set models satisfying ZF? Second, how is it sup-
posed to constitute the categoricity of the axiom system? I argue that in
order to address both questions a closer look at Dedekind’s methodological
work in the foundations of arithmetic will be instructive. More specifically, I
show that there is a striking similarity between Fraenkel’s scattered remarks
about his understanding of AR and Dedekind’s theory of chains (“Ketten-
theorie”) introduced in 1888 that suggests that Fraenkel actually modeled
his idea of restriction based on Dedekind’s approach.

Concerning the first question, we can find an insightful remark in Ein-
leitung from 1928 about the “special character” of the axiom compared to
the “existential” and “relational axioms” of ZF. Here AR is described as
similar in effect to Peano’s induction axiom. Fraenkel states that “in both
versions [of AR], the inductive moment is essential.” (Fraenkel, 1928, p. 355)
What is his intuition about this “inductive character” underlying AR? As
we have already seen, the concept of intersection plays a central role for the
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intended effect of the axiom. It is supposed to impose a minimal model as
the intersection of all possible models satisfying ZF. From a methodologi-
cal point of view, this is essentially a paring down approach of defining a
specific minimal structure by taking the intersection of all closed subsets
of a given set. This method was first introduced by Dedekind in 1888 and
used for fixing the standard model of arithmetic. One could conjecture that
Fraenkel’s idea of a minimal model for set theory was shaped in direct anal-
ogy to Dedekind’s strategy of defining the natural numbers as a minimal
set closed by induction. Now, there is no immediate textual evidence that
Fraenkel was directly guided by Dedekind’s method in his thinking about
set theoretic restriction. However, I will present a number of points that
strengthen the plausibility of this relation of influence. In the next section
a short presentation of the central concepts developed in (Dedekind, 1888)
will be presented that seem of relevance for Fraenkel’s axiom candidate.

4.1 The theory of chains
Dedekind’s project of developing an “unambiguous foundational concep-
tion” of the natural numbers in 1888 is based on a number of methodological
results concerning the central concepts that allow the reduction of numbers
to a logical basis (Dedekind, 1888, p. 351). Here the idea of an isomorphism
based on a 1–1 mapping (“ähnliche Abbildung”) between elements of two
systems is expressed formally for the first time. Systems that are isomorphic
in this sense are terminologically fixed as “classes of similar systems”.15 A
second newly introduced concept allowing Dedekind to devise the sequence
N of the natural numbers is that of a chain (relative to mapping function
ϕ and a system S): in modern terminology, a subsystem B of S is called
a chain if it is closed under a mapping ϕ (Dedekind, 1888, p. 352). Subse-
quently, a system A0 is defined as the chain of A (“Kette des Systems A”)
if and only if A0 is the intersection of all chains containing A (Dedekind,
1888, p. 353). The way Dedekind conceives A0 as the intersection of clo-
sures implies that it is also the smallest chain containing A, i.e., the smallest
subset of S closed under ϕ. Again, in modern terminology, this effectively
says that A0 is the minimal closure of A under ϕ.16

15(Dedekind, 1888, p. 351); compare (Sieg and Schlimm, 2005) for a systematic pre-
sentation of the evolution of the concept of mapping in Dedekind’s foundational work.

16Compare (Sieg and Schlimm, 2005) on this fact: “A0 obviously contains A as a
subset, is closed under the operation ϕ; and is minimal among the chains that contain
A, i.e., if A ⊆ K and ϕ(K) ⊆ K then A0 ⊆ K.” (Sieg and Schlimm, 2005, p. 145)

Dedekind (1888) himself is not explicit about the minimality property of chains of A.
There exists, however, as Sieg and Schlimm have pointed out, a note in Dedekind’s earlier
manuscript “Gedanken über Zahlen” from the Nachlass in which this issue is explicitly
mentioned: “(A) [i.e., the chain of A] is the “smallest” chain that contains the system
A”. (Quoted from Sieg and Schlimm, 2005, p. 144). I would like to thank Dirk Schlimm
for drawing my attention to this passage.
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There is an obvious similarity between the idea of minimal chains de-
veloped here, i.e., the method of building minimal closures of a given base
set and a specific operation via intersection, and Fraenkel’s remarks on AR
throughout the 1920s. A number of additional points can be mentioned that
further highlight this affinity. First, both positions are strikingly similar in
their motivations for imposing a minimal condition on the intended model.
In Fraenkel’s case, as we have seen, the aim is to restrict the model to well-
founded and abstract sets, thereby keeping out all types of non-standard
and extraordinary sets. A comparable account can also be found in De-
dekind’s writings, most explicitly in his famous letter to Keferstein from
1890. After a short discussion of his basic concepts used for expressing N
he states:

[. . .] however, these facts are still far from being adequate for com-
pletely characterizing the nature of the number sequence N. All these
facts would hold also for every system S that, besides the number se-
quence N, contained a system T , of arbitrary additional elements t,
to which the mapping ϕ could always be extended while remaining
similar and satisfying ϕ(T ) = T . [. . .] What, then, must we add to
the facts above in order to cleanse our system S again of such alien
intruders t as disturb every vestige of order and to restrict it to N.
(Dedekind, 1890, p. 100)

To exclude such non-standard elements from the interpretation in question
can thus be considered a common motivation behind the method of devising
a minimal model. In Fraenkel’s case this restriction is imposed by his AR.
In Dedekind’s proto-axiomatic presentation of the natural numbers it is
required by his clause four of a “simple infinite system” stating, in modern
terms, that A0 is the smallest set containing A and closed under ϕ (cf.
Dedekind, 1888, p. 352).17

This immediately leads to a second observation concerning Fraenkel’s
original conception of the intended model of Z which seems to be modeled
based on this idea of closure. In Dedekind’s account of the natural numbers
1 is the base element and the sequence N the intersection of all sets con-
taining 1 and closed under the successor operation. Accordingly, Fraenkel’s
intended set model is understood as the intersection of all set models that
share the properties of (a) containing the empty set and the infinite set Z
and (b) being closed under the operations specified in the Zermelo axioms,
i.e., pairing, union, power set, etc.. This is essentially an understanding of
models as “algebraic closures” (cf. Kanamori, 2004, p. 515). One can find
additional textual evidence for this conception in Fraenkel’s work from that
time, mainly in the context of building different set models satisfying certain

17As pointed out by Awodey and Reck (2002, pp. 8–9), the latter effectively corresponds
to Peano’s (second order) axiom of induction.
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restricted versions of Z—e.g., as sets closed under the operations of power
set or union—used for independence proofs (cf., e.g., Fraenkel 1922b, p. 233;
also Fraenkel 1922a, pp. 165–171). Here, as well as in the third edition of
Einleitung, he gives an informal sketch of his account of the standard model
(“Normalbereich”) of Z as a system closed under all operations specified in
the axioms. Adding the AR to ZF would impose the following effect:

This will probably result in the fact that only the empty set func-
tioning as the primary building block for all sets is set up as the
initial point. Then only those sets are admissible which emerge from
the empty set and the sets imposed by [the axiom of infinity] by an
arbitrary but certainly finite application of the individual axioms.
(Fraenkel, 1928, p. 355)

Even though Dedekind’s notion of chains is not explicitly mentioned in
Fraenkel’s remarks on model building, it seems obvious that AR can be un-
derstood here as a “restriction clause for closures” (Kanamori, 2004, p. 515),
i.e., for a universe of sets conceived in direct analogy to Dedekind’s method
of constructing minimal systems.

4.2 Categoricity results
As I have mentioned before, there is no direct indication in Fraenkel’s writ-
ings of Dedekind’s influence on his conceptualization of models and AR. In
the first edition of Einleitung from 1919, Dedekind is mentioned only for
his existence proof of infinite systems and his definition of a finite system
given in 1888. In the concluding remarks of the second edition there is a
single reference to his theory of chains that, as Fraenkel writes, has received
a “general and fundamental significance in set theory.” 18 No connection is
made to his concept of restriction. There exists, however, a passage in his
lectures from 1925 that allows one to draw a direct link between Dedekind’s
minimal closures and his own approach of devising a minimal model for
set theory. In a section on the “non-predicative” methods in mathematics,
more specifically the debate between Poincaré and Zermelo on the indis-
pensability of non-predicative proofs in mathematics, there is an interesting
footnote mentioning Dedekind’s theory:

In a series of important and thoughtful proofs in set theory especially
due to Dedekind and Zermelo [. . .], deductions of the following kind
take center stage: a set M is considered whose elements are all sets of
a specific property E exclusively characteristic for it; M is thus the
set of all sets sharing the property E. For the cases in question it is

18(Fraenkel, 1924, p. 244); most important in this respect is of course Zermelo’s adap-
tation of Dedekind’s “closure approach” in terms of chains in his second proof of the well-
ordering theorem (as well as in his proof of the Schroeder-Bernstein theorem) in (Zermelo,
1908a). For further details compare (Kanamori, 2004, pp. 501–503 and pp. 510–511).
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then shown that the sum s and the intersection d of all elements of
M themselves share the property E; therefore s and d—which exist
by virtue of the definition as sum and intersection respectively—
also belong to the set M and can be characterized as the sets the
most comprehensive and the most limited in size sharing the property
E. Due to this characterization s and d play a decisive role in the
concerned proof. (Fraenkel, 1927, p. 29; notation slightly changed)

The approach described here essentially follows the proof strategy intro-
duced by Dedekind in 1888 to prove the categoricity of arithmetic. And it
is precisely this idea—here formulated in Fraenkel’s own words—that also
seems to lie behind Fraenkel’s own understanding of AR. To interpret his
tacit assumptions underlying restriction in this way also sheds further light
on the second unsolved issue mentioned above, namely how to understand
the claim that the addition of AR to Z would render the resulting axiom-
atization categorical. Fraenkel’s remarks alone are not conclusive on this
intended effect. Here a glance at Dedekind’s categoricity proofs will be in-
structive to show how Fraenkel might have conceived a similar categoricity
result for set theory.

Dedekind’s well-known metatheoretic results (cf. Dedekind, 1888, §10)
can be qualified as instances of a categoricity based on minimal models ac-
cording to which a theory is categorical if and only if it has a minimal model
and any two minimal models are isomorphic.19 His proofs (in remarks 132
and 133) that the simple infinite system N can be captured completely,
i.e., up to isomorphism by the conditions equivalent to the Peano axioms,
strongly depends on his idea of minimal chains (cf. Dedekind, 1888, pp. 376–
377). This connection follows from Dedekind’s definition of a mapping of a
number sequence by induction used in his subsequent proofs.20 The equiv-
alence ψ(N) = θ0(ω) proved in remark 126 makes explicit the central link
between minimal chains and the mapping of a simple infinite system via
induction that plays a central role in Dedekind’s categoricity proofs.

Now, unlike Dedekind, Fraenkel did not develop an actual proof of the
categoricity of ZF + AR nor does he make any remarks how such a proof
based on AR might be built. Besides this fact, the presentation of the
central concepts of his theory (most importantly those of restriction, the

19(cf. Grzegorczyk, 1962, p. 63); a minimal model can be defined as a model M satisfy-
ing a theory T such that for every submodel N of M that also satisfies T, N is isomorphic
to M . Cf. (Grzegorczyk, 1962, p. 63).

20In remark 126 he shows that there is one and only one mapping of N into any system
Ω via a function ψ that satisfies the conditions that (i) the closure of N is a subset of
Ω, that (ii) ψ(1) = ω, where ω is an element of Ω and that (iii) for any number n,
ψ(n′) = θψ(n), where “n′” stands for the successor of “n” and θ is a function on Ω (cf.
Dedekind, 1888, pp. 370–371). In remark 128, Dedekind then proves that there exists an
equivalence between such an inductive mapping ψ(N) and a minimal closure θ0(ω) of Ω
that contains ω, i.e., ψ(N) = θ0(ω) (Dedekind, 1888, p. 372).
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set universe and minimal models) is not comparable in technical rigor to
Dedekind’s foundational work in arithmetic. Nevertheless, given the textual
evidence above as well as his various informal remarks on the effect of the
axiom candidate as imposing a minimal model, on its “inductive character”
as well as on his conception of the intended set model as a minimal closure, it
seems at least a plausible interpretation that AR was conceived by Fraenkel
in close analogy to Dedekind’s method developed in 1888.

5 Objections to AR

A number of serious objections were raised against Fraenkel’s axiom candi-
date shortly after its first presentation in print in 1922 that led to general
skepticism concerning the validity of AR as a set theoretical axiom and even-
tually prevented it from being added to the canonical list of ZF. In what
follows I will first briefly present the main arguments adduced against AR.
Then, Fraenkel’s reaction to the objections and its subsequent impact on
his own conception of set theoretic restriction will be discussed.

5.1 Baldus on meta-axioms
One point of criticism against AR was first put forward by the German
mathematician Richard Baldus during a discussion of Hilbert’s completeness
axiom in geometry (Baldus, 1928). It concerns the general metatheoretic
character of Hilbert’s and related axioms, later terminologically clustered as
“extremal axioms” (cf. Carnap and Bachmann, 1936). Baldus argues that
unlike the other axioms in Hilbert’s axiomatization of geometry (e.g., the
axioms of order), the completeness axiom makes an assertion “not only over
the thought things [of an interpretation] but actually over all conceivable
things” (Baldus, 1928, p. 331). This assumption of the non-extensibility
(“Nicht-Erweitungsfähigkeit”) of the basic elements of the domain involves
generalizing over the individuals in all models. Baldus correctly indicates a
methodological doubt about the validity of such quantification over models:

In order to preserve the completeness axiom’s status as an axiom, one
would have to allow as axioms also assertions over other things than
those thought in the respective interpretation of the axiom system,
which would extend the concept of axioms in geometry in a precarious
and superfluous way. (Baldus, 1928, p. 331)

In an attached footnote, Baldus explicitly mentions Fraenkel’s AR in this
respect expressing a direct critique of it based on similar grounds:

At a meeting in Kissingen Mr. A. Fraenkel has suggested that set
theory can in no other way be rendered monomorphic than by a
“postulate” [. . .], namely by an axiom of restriction, against which
similar objections can be raised as against the axiom of completeness.
(Baldus, 1928, p. 331)
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Baldus’ criticism of the problematic semantic character of the axiom has
meanwhile become a standard argument against extremal axioms in general
and Fraenkel’s axiom candidate in particular. The basic objection is that
AR imposes no condition on sets as the individuals of set theory, but on
set models, thus conflating “formal languages with their model-theoretic
semantics”.21

5.2 von Neumann’s subsystems
A second and somewhat related objection raised specifically against Fraenkel’s
axiom candidate is found in (von Neumann, 1925). Von Neumann presents
an alternative axiomatization of set theory based on the primitive notions
of functions (II-objects), arguments (I-objects), and objects that can be
both arguments and functions (I-II-objects).22 Furthermore, two primitive
operations [x, y] denoting the value of a function x for an argument y and
(x, y) expressing an ordered pair of arguments are given (von Neumann,
1925, pp. 397–398). Given his specific axiomatization of set theory based
on these terms, von Neumann provides the first formalized version of AR in-
tended to capture Fraenkel’s original intention of imposing a minimal model
for the resulting theory. In von Neumann’s terminology, a subsystem of a
given system is minimal if and only if it contains no subsystem that also
satisfies the axioms:

Let Σ be the system of I-objects and II-objects. Let Σ′ be a sub-
system of Σ. Let IΣ′ -objects and IIΣ′ -objects be the I-objects and
II-objects, respectively, that are in Σ′. Let [x, y]Σ′ (where x is an
IIΣ′ -object and y an IΣ′ -object) mean [x, y]; let (x, y)Σ′ (where x
and y are IΣ′ -objects) mean (x, y); let AΣ′ be A and let BΣ′ be B.
Now if these IΣ′ -objects and IIΣ′ -objects, the operations [x, y]Σ′ and
(x, y)Σ′ and the objects AΣ′ and BΣ′ also satisfy our axioms, we say
for short that Σ′ satisfies our axioms. Then the axiom of restriction
just mentioned simply requires that besides Σ itself no other subsys-
tem Σ′ of Σ shall satisfy Axioms I–V. (von Neumann, 1925, p. 404)

A and B (and their respective correlates AΣ′ and BΣ′) are both arguments,
i.e., I-objects. A subsystem in this sense is thus a collection of I-objects and
II-objects resulting from a restriction of the original system. The opera-
tions of [x, y] and (x, y) in turn are restricted to the (two types of) elements
of the subsystem. Given this formal presentation of AR, von Neumann then

21(Shapiro, 1991, p. 185); compare also (Ferreirós, 1999) who states that: “Formulated
as above [as a minimal condition on set models], the axiom is unacceptable it is no
condition on sets but on models of set theory, i.e., it is not an axiom but a metaaxiom.”
(Ferreirós, 1999, p. 369)

22(von Neumann, 1925, pp. 399–402); von Neumann’s later class/set distinction is
clearly anticipated here: those II-objects that are not I-II-objects have to be treated as
classes. Compare (von Neumann, 1925, p. 401).
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presents two “serious objections” against the axiom that are “equally true
in Fraenkel’s system.” (von Neumann, 1925, p. 404). According to the first,
AR presupposes notions of “naive set theory”, most importantly that of a
submodel that is not precisely definable in his own theory of sets.23 The
resulting regression to informal set theory would make the whole process of
axiomatizing set theory circular. A possible remedy for this is to assume a
“higher set theory” and a corresponding expanded domain P in which the
original domain Σ can be properly defined as a class of P (and the subsys-
tems Σ′ of Σ as subclasses of P ).24 However, this additional “hypothesis”
implies a second, even greater difficulty for expressing a restriction clause for
his axiomatization. Von Neumann argues that Fraenkel’s proposed method
of devising a model via the intersection of all possible models need not nec-
essarily lead to a single, unique minimal model satisfying the other axioms
(and thus to a categorical axiomatization) (von Neumann, 1925, p. 405).
This is due to the fact that the range of the generalization over all (sub-
)models of a theory involved in the intersection approach strongly depends
on which higher background set theory is assumed. Different higher sys-
tems might allow different ranges of submodels. Since Fraenkel’s minimal
model is defined via the intersection of all possible models (as in Dedekind’s
approach), the method may lead to different results when different systems
are assumed as the background theory.25

A second and more technical argument against the intersection approach
presented by von Neumann is closely related to his own axiomatization and
the satisfaction conditions he devises for subsystems of a given system. One
problem about relativizing functions and arguments of Σ to Σ′ concerns
the fact that in order for Σ′ to satisfy von Neumann’s axioms, additional
satisfaction conditions stronger than the axioms have to be devised. For
example, axiom III.2 states that there is a II-object a as such that for all I-
objects x: [a, x] = x. Von Neumann argues that this imposes the undesirable
effect for a possible subsystem Σ′ of Σ that there is a II-object a in Σ′ such
that for all II-objects x in Σ′: [a, x] = x. In order to evade this problem,
a stronger condition is added that the subsystem has to satisfy in order to

23(von Neumann, 1925, p. 404); for his distinction between sets and classes that plays
a central role in his argumentation (cf. von Neumann, 1925, p. 403).

24(von Neumann, 1925, p. 404); this remark can in fact be taken as a first and informal
expression of the conception of the set theoretic universe as a infinite progression of
“higher set theories” in which lower systems are submodels of the higher theories. This
is eventually fully spelled out in (Zermelo, 1930) (cf. the next section). One can also find
a reference in von Neumann’s remarks on the set theoretic hierarchy to Russell’s type
theory that seems to anticipate Gödel’s later work on set theory as a cumulative and
transfinite hierarchy of types (cf. Section 6): “The idea is partly the same as the one
upon which Russell’s “hierarchy of types rests”” (von Neumann, 1925, p. 405).

25Compare (Shapiro, 1991, p. 186) on this objection to Fraenkel’s paring down approach
for AR.



324 G. Schiemer

satisfy the axiom system: condition 3 states that there is a II-object a in Σ′

such that for all I-objects x in Σ: [a, x] = x (von Neumann, 1925, p. 406).
Here (as in similar cases for other axioms postulating the existence of sets)
the quantification over all objects of the subsystem that is considered to be
improper is substituted by the quantification over all objects of the original
system. In the case of axiom III.2 the improper quantification ∀xII ∈ Σ′

is replaced by ∀xI ∈ Σ.26 The resulting conditions are thus stronger than
the axioms with the effect that they are sufficient, but no longer necessary
conditions for Σ′ to satisfy the axioms. In addition, von Neumann points
out that there exists a smallest submodel that satisfies the given additional
conditions and that can be constructed via intersection, but not necessarily
a minimal model for the axioms (cf. von Neumann, 1925, pp. 405–408).
Given this set of objections, the following strong conclusion is drawn for
Fraenkel’s axiom candidate:

For these reasons we believe that we must conclude, first, that the
axiom of restriction absolutely has to be rejected and, second, one
cannot possibly succeed in formulating an axiom to the same effect.
(von Neumann, 1925, p. 405)

According to von Neumann, this fact, together with the existence of “in-
accessible sets” (such as “descending sequences of sets”) that lie “outside
the system” in question are the main sources of the non-categoricity of set
theory (von Neumann, 1925, p. 405).

5.3 Zermelo on set models
A third and more general objection against Fraenkel’s axiom candidate
was expressed in Zermelo’s seminal paper “On boundary numbers and set-
domains” (Zermelo, 1930). Zermelo introduces a new conception of the set
universe as an open and unbounded sequence of set models (Normalberei-
che) of increasing size that satisfy his axiomatization.27 We have mentioned
that a comparable view of a sequence of larger and larger set models had
already been presented but not further developed in (von Neumann, 1925).
Zermelo, in giving a formal explication of a cumulative hierarchy of sets,
also provides a definitive clarification of the semantic notions of set models
and submodels that can be found both in Fraenkel and in von Neumann.
According to Zermelo, each set is decomposable into layers and cumulative
sections that include all sets formed at earlier layers in the set theoretic hi-
erarchy.28 Set models VQ

κ in turn are treated as sets that can be specified by

26For a comparable notion of relativization (cf. also Gödel, 1940, p. 76).
27Zermelo’s proposed axiom system can be considered as a second order version of ZF

since it contains a second order formulation of the axiom of replacement.
28(Zermelo, 1930, pp. 32–33); for the technical details of this early version of an iterative

conception of sets (cf. Kanamori, 2004, pp. 521–524).
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two numbers, a base Q—the cardinality of its first rank, i.e., the base set of
individuals—and a characteristic or boundary number κ as the least ordinal
greater than all ordinals contained in the model. From this it follows that
each model can act as a submodel of a set model with a higher boundary
number (cf. Zermelo, 1930, p. 31). Thus, the universe V is composed of a
“boundless progression” of set models (Zermelo, 1930, p. 29).

This conception of the set theoretic universe as an unlimited sequence of
models obviously differs substantially from Fraenkel’s static conception of
a closed and fully describable universe of sets. This divergence also results
in an opposing view on the issue of the (non-)categoricity of set theory.
Whereas Zermelo shows that his axiomatization captures set models of a
given base and boundary number up to isomorphism—the main results of
his article in fact are three “isomorphism theorems” and their respective
proofs29—an absolute concept of categoricity in Fraenkel’s meaning of cap-
turing a unique model is not possible due to the boundlessness of the set
theoretic universe, i.e., the “existence of a unlimited sequence of boundary
numbers” (cf. Zermelo, 1930, pp. 40–41).

Given Zermelo’s picture of V, talk about the single intended model cap-
tured by ZF is shown to be inadequate. This insight also underlies Zermelo’s
more general critique of restrictive axioms. We have seen that von Neumann
holds the assumption that for set theory there always exists a larger domain,
a higher set theory in which the original model is definable as a set and in
which a restriction for the lower theory yielding categoricity could at least
in principle be formulated. Zermelo’s theory of relative or quasi-categoricity
essentially conforms to this view. Nevertheless, for him a domain restriction
will never be desirable from a practical point of view, because it decisively
delimits the functional role of set theory as a foundational discipline:

Our axiom system is non-categorical which in this case is not a dis-
advantage but rather an advantage, for on this very fact rests the
enormous importance and unlimited applicability of set theory. (Zer-
melo, 1930, p. 45)

Here lies the central objection to Fraenkel’s account of restriction. Its effect
is not considered a theoretical virtue of the axiomatization, but rather as a
deficiency in a practical sense: it restricts set theory in its proper founda-
tional goal, i.e., in the task of formalizing mathematics. Zermelo explicitly

29Briefly, the first holds that two models A and B with the same base cardinality
and the same characteristic are isomorphic to each other. The second theorem states
that a model A that shares the same base cardinality with model B but has a different
characteristic is isomorphic to a certain cumulative rank of B. Theorem 3 holds that if A
and B share the same characteristic but have different bases, then one is isomorphic to a
submodel of the other model. Cf. (Kanamori, 2004, p. 527) for a more detailed account.
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refers to Fraenkel’s axiom candidate in order to underline the difference
between their conceptions. He remarks that,

Naturally one can always force categoricity artificially by the addition
of further ‘axioms’, but always at the cost of generality. Such postu-
lates, like those proposed by Fraenkel [. . .] do not concern set theory
as such, but rather only characterize a quite special model chosen by
the author concerned. [. . .] the applicability of set theory has to be
given up. (Zermelo, 1930, p. 45)

Note that Zermelo’s actual objection against restrictive axioms like Fraenkel’s
primarily concerns the fruitfulness of set theory as foundational discipline.
Any deliberate restriction of the set universe negatively affects the “full
generality” of set theory, i.e., its “unlimited applicability” to mathematics
(Zermelo, 1930, p. 45). As we shall see in Section 7, this objection antici-
pates Maddy’s recent critique of what she terms “restrictiveness” concerning
set theoretic structures in questions of axiom choice. For present purposes,
it suffices to point to the fact that Zermelo, in his motivation for a cumu-
lative universe claims to be more attentive to this pragmatic ideal of the
foundational goal than Fraenkel in his call for a categorical axiomatization.

6 Fraenkel’s reaction

Fraenkel’s reaction to the presented objections against the axiom of restric-
tion in his subsequent work is instructive in several ways. First, it better
illustrates his own tacit understanding of the concepts involved in his earlier
presentation of the axiom. Second, it also highlights substantial shifts in
his understanding of the axiom as a direct result of these criticisms.

6.1 Vindications of AR

As far as I know Fraenkel never responded in print to Baldus’ legitimate
doubts about the metatheoretic character of extremal axioms and their se-
mantic implications. Even though he acknowledged the “special character”
of the axiom in comparison to the other axioms of ZF he never seemed to
become aware of the problem that the axiom in fact requires a generaliza-
tion over set models.30 More generally, as mentioned above, Fraenkel—in
his writings on set theory in the 1920s—seems to have been indecisive con-
cerning questions of the adequate logical presentation of his axiomatization,
and in particular of his AR. The question of the proper formalization of the
axiom candidate is eventually taken up by Fraenkel almost three decades
later in his Foundations of Set Theory (Fraenkel and Bar-Hillel, 1958). Here

30As Shapiro points out this fact is probably due to the circumstance that a clearly
delineated syntax/semantic-distinction was far from being standard by the time Fraenkel
developed his theory. Compare (Shapiro, 1991, p. 184).
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the authors refer to different attempts to formalize AR as a minimal axiom
in a higher order logical language by Carnap:

True, recently [. . .] Carnap proposed a vindication of this axiom of
restriction, and Carnap formulated it symbolically, as an axiom of a
minimal model [. . .]. (Fraenkel and Bar-Hillel, 1958, p. 90)

Carnap, in his (Carnap, 1954) formally expressed Fraenkel’s account of a
minimal property codified in AR by the use of higher-level binary relations
(representing membership relations) and the notion of a partial relation:
“There exists no proper partial relation of E that also satisfies the properties
stated in axioms A1 to A8 [i.e., ZF].” (Carnap, 1954, p. 154). His formal
version depends on the (higher order) universal quantification over (partially
defined) membership relations (Carnap, 1954, p. 154):

(H)[(x)(y)(Hxy ⊃ Exy).Kon(H) ⊃ (x)(y)(Hxy ≡ Exy)]

“Kon” stands for the union of all axioms of ZF; x and y are individual
variables ranging over sets. The axiom in this logical formulation basically
states that E is the minimal interpretation for set theoretic membership
consistent with ZF.31 Fraenkel, in an attached footnote to the passage
cited above stresses this notion of a restriction condition in Carnap’s formal
presentation as an adequate version of his own informal treatment of AR:
“The pith of the axiom is then the demand that no “partial relation” ε
should fulfill the conditions expressed by the other axioms”.32

Whereas comments on the logical status of AR are limited to his later
writings, Fraenkel immediately reacted to the objections leveled against the
axiom by von Neumann. This might seem surprising at first sight because
it is far from obvious that the latter’s critique actually meets Fraenkel’s
informal presentation of the restriction on set models. First, it seems more
reasonable that the technical objections against the AR rather concern von
Neumann’s own non-standard axiomatization of set theory (and specifically
his formalization of the AR) than Fraenkel’s preliminary and informal ideas.
Second, the general validity of his critical remarks against restriction can be
challenged by drawing attention to a number of inconsistencies in his own
treatment of set models. As Shapiro (1991) has shown, von Neumann’s set
theory does not allow a consistent presentation of models (as classes contain-
ing its subclasses) due to the fact that proper classes cannot be conceived as

31Compare (Carnap and Bachmann, 1936) for a slightly different formalization of AR
as a minimal model axiom.

32(Fraenkel and Bar-Hillel, 1958, p. 90); it remains debatable—in light of modern
model theoretic semantics—if Carnap’s approach actually vindicates Fraenkel’s AR from
objections along the lines of Baldus’ remarks. For interesting related remarks concerning
the axiom (cf. Shapiro, 1991, p. 186).
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elements of either sets or classes in his theory.33 Nevertheless, Fraenkel in
grosso modo seems to have acknowledged von Neumann’s critique. Already
in 1927 he considers it “very doubtful” whether his version of restriction
can be attributed “a sound meaning”. He states that,

One seriously has to take the eventuality into consideration that the
possible realizations of the axiom system that differ in their size do
not have a smallest common subpart that would also satisfy all the
axioms. Also the previously given instruction for a “construction” of
such a smallest model [. . .] need not lead to a definite result since the
axioms IV–VI [i.e., the axioms of power set, separation and choice]
themselves do have a purely constructive character. This is a seri-
ous and so far not satisfactorily solved problem from which possibly
the natural necessity of a certain “boundlessness” and also a certain
vagueness (so to speak at the boundaries) of the yet legitimate con-
cept of set will follow. (Fraenkel, 1927, p. 102)

The first remark essentially rephrases von Neumann’s critique. The second
remark concerning the “boundlessness” of the set concept seems already—
i.e., three years before Zermelo (1930)—to indicate doubts about his con-
ception of the set universe as an (algebraic) closure.34 Despite the acknowl-
edged criticism, Fraenkel remains optimistic about the practical usefulness
and general correctness of a restrictive axiom.35

6.2 New axioms of restriction
Fraenkel’s subsequent discussion of the axiom candidate is marked by a
number of substantial modifications. By 1958, in Foundations of Set The-
ory, both the intended character of AR and its extrinsic justification change
substantially. One can witness here a more tolerant attitude concerning
different additional axioms candidates for set theory, including stronger in-
finity axioms that are—as Fraenkel puts it—“antithetical” to AR (Fraenkel
and Bar-Hillel, 1958, p. 87). Fraenkel acknowledges that, in contrast to prior
belief, inaccessible numbers have “significance not only for the foundations
of set theory but also for some applications.” (Fraenkel and Bar-Hillel,
1958, p. 87) Following a short presentation of different kinds of axioms that

33Cf. (Shapiro, 1991, p. 186); Shapiro suggest a modification of this system in order to
vindicate the axiom of restriction, to the effect that “sets and proper classes of the original
theory (can be treated as) as elements, i.e., as sets” thereby allowing to treat models for
a theory T as the subclasses of a higher-level theory T ′. The effect on restriction would
then be that “[. . .] one can state in the higher theory that a given class has no proper
subclasses that are models of ordinary set theory.” (Shapiro, 1991, p. 186)

34Similar remarks along these lines can be found in (Fraenkel, 1928).
35In (Fraenkel, 1928) he concludes his discussion of the axiom by stating that: “Never-

theless I like to believe that the mentioned doubts can be resolved and that the axiom of
restriction can be maintained—and then considered as a very central part of the axiom-
atization! if only its formulation can be made more precise.” (Fraenkel, 1928, p. 355).
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postulate inaccessible cardinalities, he returns to a discussion of his axiom
of restriction, however, not without providing a new motivation for it. The
main intention behind AR is no longer to rule out non well-founded sets
but to be restrictive in another sense, namely to “yield just all ordinals
less than the least inaccessible ordinal number” (Fraenkel and Bar-Hillel,
1958, p. 88). Whereas the well-foundedness of the sets composing the set
theoretic universe is now secured by the axiom of foundation (as proposed
in von Neumann 1925 and Zermelo 1930), the main rationale for introduc-
ing the axiom of restriction is to secure the “non-existence of inaccessible
numbers” (Fraenkel and Bar-Hillel, 1958, p. 88). The former version of AR
is thus functionally divided into an independent axiom of foundation and
a kind of accessibility axiom introduced to exclude all inaccessible num-
bers. Interestingly, Fraenkel’s original paring down method for imposing a
minimal model as the intersection of all “realizations” is still upheld as an
adequate means of achieving this new and structurally different set theo-
retic restriction: “Then the non-existence of inaccessible numbers or of the
corresponding sets, as well as of extraordinary sets [. . .] could be proved.”
(Fraenkel and Bar-Hillel, 1958, p. 89)

Fraenkel’s change in perspective concerning the nature of AR calls for
two comments. First, recall Zermelo’s critical remarks on restrictive ax-
ioms like AR and the fact that inaccessible cardinals (“Grenzzahlen”) were
first introduced in his 1930 paper as a direct consequence of his dynamic
account of the set theoretic universe as a progression of set models (delim-
ited by such boundary numbers). Given this, it is natural to interpret the
shift in Fraenkel’s conception of set theoretic restriction as a direct reaction
to the theory of set models proposed in (Zermelo, 1930). Second, notice
also the underlying change from Fraenkel’s original understanding of the
set theoretic universe as a static structure that becomes evident here. In
Foundations of Set Theory, Fraenkel must, at least to a certain point, have
acknowledged Zermelo’s conception of the set theoretic universe. Otherwise
this new reading of AR as an accessibility axiom that rules out higher nat-
ural models would simply make no sense. Nevertheless, he still argues for a
restriction of the universe to a minimal model. His motivation outlined in
1958 seems to be a somewhat unjustified disapproval of Zermelo’s presenta-
tion of the set models in general and the idea of relative categoricity results
for set theory in specific. In a remark he critically comments on Zermelo’s
results from 1930:

The cardinal of the basis and the ordinal α together are an invari-
ant characteristic of the intended domain of sets. The first leads to
the domain of finite sets, the second to the domain of sets up to the
first inaccessible number. However, Zermelo’s proof that this invari-
ant guarantees the monomorphism (categoricalness) of the domain



330 G. Schiemer

can hardly be considered stringent, and even the concepts used, e.g.,
“cardinal of the basis” are objectionable. (Fraenkel and Bar-Hillel,
1958, p. 92).

Zermelo’s different categoricity results for his axiomatization, especially
his version of categoricity in a given power seems to be in conflict with
Fraenkel’s principal aim of providing a single categorical axiomatization of
set theory. This adherence to the axiomatic ideal of absolute categoricity is
probably the main reason why Fraenkel not only did not accept Zermelo’s
1930 objection against his axiom candidate but in effect redefined AR with
the motivation to rule out the existence of Zermelo’s higher boundary num-
bers. The extrinsic motivation of gaining a categorical axiomatization via
this new version of a “limitative axiom” is again clearly stated in 1958:

A suitable axiom of restriction should enable us to prove that all
models of the axiom system are isomorphic, i.e., admit a one-to-one
mapping which preserves the ∈-statements. (Cf. also Gödel’s postu-
late of constructibility [. . .]). (Fraenkel and Bar-Hillel, 1958, p. 89)

Fraenkel’s reference to Gödel’s axiom V=L (or alternatively axiom A) in
the passage above deserves closer attention here. As has been pointed out
by Maddy (1997), the axiom V=L also imposes a kind of minimal model
on ZFC. Without going into further details here, one can understand the
constructible universe L as the minimal inner model of ZFC,36 since for
all inner models M of ZFC, the constructible model LM (as the class of
all constructible sets in M) is identical to L, i.e., LM = L due to the
absoluteness of L.37 In Maddy’s own terms: “[. . .] if M is a transitive
model of ZFC containing all ordinals, then the constructible sets of M are
the real constructible sets, and thus, L ⊆ M .” (Maddy, 1997, p. 73) Thus
any extension of L “will contain sets different from all relevant constructible
sets.” (Maddy, 1997, p. 73)

Now, it is worth noting that for both accounts, V=L and AR, the respec-
tive minimal models can be constructed—despite von Neumann’s original
objections—by the kind of intersection approach first outlined by Fraenkel.
One can understand the model L as the intersection of all inner models
of ZFC.38 In contrast, the model satisfying ZF plus Fraenkel’s AR (as an
accessibility axiom) can be constructed via the intersection of all natural
models with an empty base. Concerning the question of the categoricity of

36The layers of L are constructed in similar fashion to the cumulative hierarchy in V,
however, as elements of a level α+ 1 only of the (first order) definable subsets of Lα are
admitted. Compare (Maddy, 1997, p. 65).

37Cf. (Gödel, 1940, pp. 68–78) for a formal presentation of L and on the notion of
absoluteness. Compare also (Maddy, 1997, p. 73) and, for a more detailed discussion of
Gödel’s set theory, cf. (Kanamori, 2007).

38Compare (Jech, 2002, p. 187).
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axiomatic set theory, there is also a point of continuity between Fraenkel’s
AR and Gödel’s axiom. What is especially worth noting in this respect is
that on both accounts categoricity can be achieved by (different types of)
set theoretic minimization (again given that ZF is second-order). In a recent
paper, Kanamori explicitly points out this methodological affinity between
Fraenkel and Gödel:

Gödel’s axiom A, that every set is constructible, can be viewed as
formally achieving this sense of categoricity [i.e., “Fraenkel’s idea of
a minimizing, and hence categorical axiomatization”] since [. . .] in
axiomatic set theory L is a definable class, containing all the ordi-
nals, that, together with the membership relation restricted to it, is
a model of set theory, and L is a submodel of every other such class.
(Kanamori, 2004, p. 539)

Obviously, the (minimal) set models characterized up to isomorphism differ
substantially in the two cases. In Fraenkel’s 1958 version of restriction,
ZFC + AR yields the model V0

κ, where 0 signifies the empty basis and κ the
first inaccessible rank of V. In contrast, ZFC + V=L does not rule out any
limit numbers but characterizes the least inner model of ZFC.

Beside the reference to Gödel’s axiom in the passage cited above, Fraenkel
does not get more explicit on how his AR relates to the axiom of con-
structibility. However, there exists an interesting aftermath to Fraenkel’s
own conceptualization of AR that can be found in the second and revised
edition of Foundations, (Fraenkel et al., 1973), published after Fraenkel’s
death in 1966. In an expanded section devoted to axioms of restriction,
Lévy proposes two new candidates, both reflective of Fraenkel’s own con-
siderations given in 1958 (Fraenkel et al., 1973, pp. 113–119). It is argued
that both new versions of AR can be “equated with” Fraenkel’s original con-
ception but can be formulated “within our axiomatic theory”, thus evading
the objections against the former axiom’s metatheoretic character (Fraenkel
et al., 1973, p. 114). The first axiom candidate, AR1, is conceived as the
conjunction of an axiom of foundation and an accessibility axiom (as already
suggested in the first edition of Foundations by Fraenkel himself). For the
second and stronger restrictive axiom candidate, AR2, Lévy seems to have
taken into account Fraenkel’s analogy with Gödel’s axiom of constructibil-
ity. AR2 is thus defined as the conjunction of V=L and a principle ruling
out transitive sets as models of ZF (Fraenkel et al., 1973, p. 116).

6.3 An “intuitive” consideration
Overall, the presentation of the restrictive axioms in (Fraenkel et al., 1973)
is close in spirit to Fraenkel’s considerations in the first edition. In particu-
lar the extrinsic motivations stated for the two axiom candidates, namely to
rule out non-well-founded sets and sets of inaccessible ordinals, are identical
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to his arguments from 1958. Lévy, in 1973, also mentions the fact that the
addition of either one of the two axioms to a second order version of ZF
would lead to a categorical axiomatization.39 However, one can also detect
a significant change in the second edition compared to Fraenkel’s earlier re-
marks. We have seen that Fraenkel, in his writings from the 1920s onwards,
provides exclusively extrinsic motivations for AR. There is to my knowledge
not a single remark in his work indicating a kind of intrinsic motivation for
the axiom candidate based on mere reflection on his underlying concept of
set universe.40 In contrast, in the second edition of Foundations a discus-
sion of “the desirability of restriction in general” as a basis for evaluating
the axioms AR1 and AR2 is given. The extrinsic arguments for the axiom
candidates mentioned above are complemented here by a new type of re-
flection. Lévy makes the following remark concerning a necessary “intuitive
justification” of the axioms of restriction:

In the case of the axiom of induction in arithmetic and the axiom of
completeness in geometry, we adopt these axioms not only because
they make the axiom systems categorical or because of some meta-
mathematical properties of these axioms, but because, once these ax-
ioms are added, we obtain axiomatic systems which perfectly fit our
intuitive ideas about arithmetic and geometry. In analogy, we shall
have to judge the axioms of restriction in set theory on the basis that
the set theory obtained after adding these axioms fits our intuitive
ideas about sets. (Fraenkel et al., 1973, p. 117)

This passage documents a substantial shift in the methodology of axiom
choice compared to Fraenkel’s original approach. Part of the new evalua-
tion strategy proposed here is clearly intrinsic in character in Maddy’s sense:
not in terms of an allusion to a set-theoretic intuition or self-evidence, but
explicitly based on a prior explanation of the set universe underlying the ax-
iomatization (cf. Fraenkel et al., 1973, pp. 87–88). What is effectively called
for here is that the justification of an axiom has to depend on a combination
of extrinsic and intrinsic considerations. The latter are necessary to con-
firm (so to speak in a second loop) the choice originally made on extrinsic
grounds. An acceptance solely based on extrinsic considerations—such as
on “metamathematical properties” of the resulting axiomatization—do not
provide sufficient evidence unless backed up by intrinsic reflection whether

39In contrast to Fraenkel’s own perception, Lévy makes clear in the revised version
that the possible categoricity results for set theory are those “essentially contained in
Zermelo [1930].” (Fraenkel et al., 1973, p. 115).

40It is usually Zermelo that is credited with providing the first genuinely intrinsic
justification of his axioms based on the cumulative hierarchy of set. Compare Kanamori
on this point in Zermelo’s 1930 paper: “In a notable inversion, what has come to be
regarded as the underlying iterative conception became a heuristic for motivating the
axioms of set theory generally.” (Kanamori, 2004, p. 521)
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the axioms actually fit or comply with the underlying conception of the uni-
verse they are intended to characterize. Turning to the cases of AR (without
focusing on a specific version), Lévy draws a rather pessimistic conclusion
for Fraenkel’s axiom candidate:

To restrict our notion of set to the narrowest notion which is com-
patible with the axioms of ZFC just for the sake of economy is appro-
priate only if we have absolute faith that the axioms of ZFC (and the
statements which they imply) are the only mathematically interesting
statements about sets. It is difficult to conceive of such absolute faith
in the sufficiency of the axioms of ZFC [. . .]. Even if one had such faith
in the axioms of ZFC, it is likely that he would settle rather for some-
thing like an axiom of completeness, if there were some reasonable
way of formulating it. (Fraenkel et al., 1973, p. 117)

This can only be understood as an intrinsically based claim against minimiz-
ing principles in set theory. Unfortunately, no supporting argument showing
exactly why AR does not match the cumulative hierarchy of sets is given.
However, the underlying idea here seems to mirror Zermelo’s objection in
his 1930 paper that any kind of minimizing principle artificially restricts the
cumulative hierarchy of sets, thereby ruling out potentially mathematically
interesting structures.41

7 Maddy’s MAXIMIZE

Fraenkel’s axiom candidate is not mentioned in (Maddy, 1997). Neverthe-
less, Lévy’s negative conclusion concerning “the desirability of restriction”
as a set theoretic principle also seems to be in line with her more systematic
approach of evaluating axiom candidates in terms of two “methodological
maxims”, Unify and Maximize (cf. Maddy, 1997, pp. 208–212). We have
seen that Fraenkel shares with Maddy an understanding of set theory as
a foundational discipline and thus the motivation for assuring its “founda-
tional goal” through unification, i.e., through providing a single arena in
which mathematics can be presented.42 Therefore, AR fits perfectly with

41Note that one can also identify an interesting affinity to Gödel’s changing attitude
towards his axiom V=L as a minimizing principle here. In a footnote in (Gödel, 1939),
an intrinsic motivation for his axiom A is presented: “In order to give A an intuitive
meaning, one has to understand by sets’ all objects obtained by building up the simplified
hierarchy of types on an empty set of individuals (including types of arbitrary transfinite
orders).” (Gödel, 1939, p. 29) By 1964, in contrast, Gödel provides a direct intrinsic
argument against a “minimum property” such as expressed by V=L: “Note that only
a maximum property would seem to harmonize with the concept of set [. . .].” (Gödel,
1964, pp. 262–263) Compare also (Maddy, 1997, p. 84) on this shift in Gödel’s view.

42Compare Maddy on this point: “One methodological consequence of adopting the
foundational goal is immediate: if your aim is to provide a single system in which all
objects and structures of mathematics can be modeled or instantiated, then you must
aim for a single fundamental theory of sets.” (Maddy, 1997, pp. 208–209)
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Maddy’s first maxim, Unify. The tension with her program clearly arises in
relation to the more extensively discussed second principle of axiom choice,
Maximize. The general idea underlying this principle, namely to defend
axioms on the basis whether they maximize the set theoretic structure, i.e.,
secure new isomorphism types not reachable from the given axioms, looks
antithetical to Fraenkel’s intentions behind AR.43 In fact, Maddy proposes
a notion of Maximize based on a formal “criterion of restrictiveness” for
axiom systems (cf. Maddy, 1997, III.6). According to it, a theory “T is re-
strictive iff there is a consistent T ′ that strongly maximizes over T” (Maddy,
1997, p. 224). T ′ in turn strongly maximizes over T iff (i) it delivers new
isomorphism types not provable from T , (ii) it is inconsistent with T and
(iii) there is no T ′′ that maximizes over T ′ (cf. Maddy, 1997, p. 224). Given
this explication, we can see in what sense the different versions or AR are
restrictive in terms of this formal criterion. Maddy is clear in pointing out
that Fraenkel’s first version of the axiom candidate as a kind of axiom of
foundation is not restrictive (in relation to an axiom system including an
“anti-foundation axiom”) since the addition of non well-founded sets does
not provide any additional isomorphism types compared to the models of
ZFC (Maddy, 1997, p. 217). What about Fraenkel’s 1958 understanding of
AR as an accessibility axiom? Here again, Maddy’s criterion would not rule
out the axiom candidate. As Maddy shows in Section III.6., the axiom sys-
tem ZFC + “there exists an inaccessible cardinal” (IC) does not maximize
over ZFC in a proper sense, even though it clearly allows new isomorphism
types. The reason is that it simply does not satisfy condition (ii) of be-
ing inconsistent with ZFC. Given this, ZFC is not restrictive in relation to
ZFC + IC (Maddy, 1997, p. 222). By the same token, ZFC + “there exist
no inaccessible cardinals” is not restrictive relative to ZFC since the latter
does not “inconsistently maximize” over the former. However, compared
to higher cardinal axioms like IC, the AR is in fact restrictive in the formal
sense. The case remains where AR is conceived as a kind of axiom of con-
structibility (as pointed out by Lévy in Fraenkel et al. 1973). Here again,
Maddy shows that ZFC + V=L is restrictive in the strong sense relative to
different axiom systems imposing higher isomorphism types like ZFC+ “0#

exists”, ZFC + V 6=L or ZFC + MC (a measurable cardinal axiom) (Maddy,
1997, pp. 223–224).

One can interpret these results (provided that one accepts Maddy’s for-
mal criterion of restrictiveness as a viable principle for axiom choice) as
a direct and strong extrinsic argument against Fraenkel’s AR. However, a

43Cf. again Maddy: “[. . .] if set theory is to play the hoped-for foundational role, then
set theory should no impose any limitations of its own: the set theoretic arena in which
mathematics is to be modeled should be as generous as possible; the set theoretic axioms
[. . .] should be as powerful and fruitful as possible.” (Maddy, 1997, pp. 210–211)
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direct evaluation in terms of Maddy’s second maxim would seem somewhat
misplaced, for several reasons. First, it would be insensitive to the historical
context of axiomatic set theory prior to 1930 in which the axiom candidate
was originally devised. It would fail to take into account the general un-
derstanding of the axiomatic project in mathematics around that time that
guided Fraenkel in setting up his axiom candidate in the first place. We
have seen that one of the main motivations of introducing AR was to yield
the “completeness of an axiom system” in the sense of its categoricity which
was conceived as a central theoretic ideal for any axiomatization, irrespec-
tive of its subject matter.44 Second, modern higher set theory in general and
the various higher cardinal axioms in specific which form Maddy’s actual
field of investigation for her methodological principles certainly transcend
Fraenkel’s original horizon of set theory as a foundational discipline.45 His
attempt to meet the foundational goal was to propose an axiomatization
that would allow a “clean and secure construction of the foundations of all
mathematical sciences”, without further detailing the spectrum of mathe-
matics referred to here (Fraenkel, 1928, p. 393). In his discussion of AR he
explicitly states the belief that “likely all mathematically significant sets,
e.g., sets of numbers and points, can [. . .] be secured within the thus re-
stricted axiomatic [system].” (Fraenkel, 1928, p. 355) Fraenkel assumed—
and correctly so—that the axiomatization ZFC+AR sufficiently fulfilled the
foundational goal for all relevant mathematics faced with in this period.46

Given this, one could be inclined to argue that even though Fraenkel’s
project might have been consistent with the mathematical knowledge of his
time, it is simply outdated as a foundational enterprise from a modern point
of view given the progress in mathematics since 1930 (and specifically the
recognition of higher set theory as a proper and autonomous mathematical
discipline). But here again, a final judgment depends on the specific role
ascribed to set theory. If it is considered as a proper mathematical dis-
cipline, Maddy’s maximizing maxim is a perfectly reasonable principle for
the choice of its axioms. Note, however, that set theory then can hardly be
called a foundational discipline in the original strict sense.47 If, in contrast,

44Compare (Corcoran, 1980).
45Fraenkel, in 1928, already discusses the possibility of “special existence axioms” pos-

tulating higher cardinals (than those secured by the axioms of infinity and replacement)
and then concludes: “However, theses problems lie in the most remote regions of the
theoretical science and have so far barely a connection to the questions raised by the
scientific demands of the present.” (Fraenkel, 1928, p. 310)

46The model characterized by ZFC2 + AR1 is sufficiently strong to represent the real
and complex numbers, as well as function over real numbers etc. used in classical mathe-
matics. For different models of second order ZF compare, e.g., (Uzquiano, 1999, p. 290).

47In this case, it is difficult to provide a sound argument why unification should be
a desirable maxim (in contrast to allowing a series of possibly incompatible set theories
designed for different tasks).
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it is primarily understood as a foundational enterprise used for modeling
“everyday mathematics” (and not as a proper mathematical field), it seems
less clear that Maximize is actually a reasonable methodological guideline,
since it is simply not necessary from a mathematical point of view. One can
sense here a certain tension in Maddy’s naturalistic account between the
two principles she attributes to axiomatic set theory.48 A similar point was
recently stressed by Friedman in (Feferman et al., 2000). He argues that
Maximize as a maxim for set theoretic axiom choice is not relevant for the
working mathematician exclusively interested in set theory as a tool for “a
more or less standard set theoretic interpretation of mathematics, with ZFC
generally accepted as the current gold standard for rigor”.49 Not only is
ZFC then perfectly sufficient for supplying a foundation for ordinary math-
ematics, one can also quite naturally limit it to more restricted versions
along the lines of Fraenkel’s suggestions. Concerning Maddy’s objections to
V=L, Friedman remarks: “However, for the normal mathematician, since
set theory is merely a vehicle for interpreting mathematics so as to establish
rigor, and not mathematically interesting in its own right, the less set theo-
retic difficulties and phenomena the better.” (Feferman et al., 2000, p. 436)
He puts forward an informal principle inverse to Maddy’s Maximize for
foundational set theory: “more is less and less is more” (Feferman et al.,
2000, p. 437)

One is inclined to view Fraenkel’s motivation for introducing his AR in
exactly this sense, i.e., in securing a streamlined concept of set (or of the set
theoretic universe) that allows for the reconstruction of standard mathemat-
ics and rules out anything nonessential for this task. Given this, Fraenkel’s
motivations for AR have to be considered as fully rational (in Maddy’s own
naturalistic sense). Moreover, as Friedman’s remarks underline—given a
modest understanding of set theory’s foundational task—it remains far from
evident that minimizing principles like AR are less reasonably grounded in
mathematical practice than Maddy’s principle for set theoretic maximiza-
tion.

48Maddy explicitly mentions a possible tension between Unify and Maximize if taken
as complementary maxims for some cases of axiom choice (cf. Maddy, 1997, pp. 211–212).
The point I want to make here is more general and concerns the rationality of Maximize
if one presupposes a foundational goal for set theory.

49(Feferman et al., 2000, pp. 434–435); a similar point is made by Feferman in his
discussion of Maddy’s naturalistic project. He states that “there is not a shred of evi-
dence so far that we will need anything beyond ZFC—or even much weaker systems—to
settle outstanding combinatorial problems of interest to the working mathematician.”
(Feferman et al., 2000, p. 407)
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