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1 Introduction

Most traditional theories of cognition, such as the computational theory of
mind favored by cognitive science during the last half of the 20th century,
imagine cognitive content to be located inside the head of the thinking
agent. The head is, in short, conceived as a container isolating the cognitive
content inside from the physical world on the outside. Furthermore, sensing,
planning, and acting are supposed to be three clearly distinct activities, and
they are supposed to be performed in the mentioned order: First you sense,
then you use your internal cognitive resources to form a plan, and finally
you enact your plan.

This general picture of thinking is also visible in some theories of math-
ematical cognition, such as the ‘abstract code model’ where a tripartition
between comprehension (of the mathematical problem), calculation, and re-
sponse (e.g., in the form of a written number) is hypothesized (Campbell
and Epp, 2005).

During the 1980s this conception of cognition was met with considerably
opposition from many different fronts (such as studies in animal vision,
robot engineering, philosophy of consciousness, neuroscience etc.). I will
not review all of the arguments here, but instead focus on a single line
of criticism. This line of criticism simply points out that the container
metaphor is inadequate. Parts of human cognition can indeed be described
as contemplation taking place inside the head, as the container metaphor
suggests, but not all of it. Much of human cognition can only be understood
as interactive processes involving the brain, the body, and the surrounding
environment (both social and physical).

The interactive nature of human cognition is evidenced by our use of a
number of cognitive tools including:

1. Epistemic actions, i.e., actions taken in order to gain knowledge and
not in order to achieve a practical end.

2. Cognitive artifacts, i.e., artifacts developed in order to facilitate think-
ing. These can be either physical or conceptual.
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3. Conceptual metaphors, i.e., metaphors where a—typically abstract—
phenomenon or idea is expressed and understood using the terms and
knowledge from another—typically more basic—conceptual domain.

It should be noted however, that these tools are not neutral instruments
that merely enhance our cognitive powers. The tools might shape our cog-
nitive style and they are in some instances constitutive of particular types
of reasoning.

In what follows, I will briefly present the cognitive tools and exemplify
their use in mathematics. I will demonstrate how the three tools comple-
ment each other in the mathematical practice, and discuss to what extent
they have shaped what mathematics is.

2 Epistemic actions and distributed cognition

Our first example of interactive cognitive processes that involves brain, body
and environment is epistemic actions. They were identified and defined by
Kirsh and Maglio (1994). Where pragmatic actions are actions performed
with a pragmatic goal, such as peeling potatoes, an epistemic action is
defined as:

“[A] physical action whose primary function is to improve cognition
by:

1. Reducing the memory involved in mental computation, i.e., space
complexity;

2. Reducing the number of steps involved in mental computation,
i.e., time complexity;

3. Reducing the probability of error of mental computation, i.e.,
unreliability.” (Kirsh and Maglio, 1994, p. 514)

Kirsh and Maglio give several examples of epistemic actions. If you have a
tendency to forget your key, you might for instance leave it in your shoe.
Then you are sure to be reminded of it when you put on your shoes before
you leave your apartment. By putting the key in the shoe, the key becomes a
cognitive device that reduces both the probability of error and the demands
on internal memory. Hence, the act of putting your key in your shoe is an
epistemic action.

The concept of epistemic actions fits well in the general theory of cogni-
tion called distributed cognition. In contrast to traditional theories of cogni-
tion, this approach does not identify cognition with information processing
going on inside the human skull, but allows cognition to be distributed
across individual human minds, social groups, and resources in the external
environment (Zhang, 1997; Holland et al., 2000).
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In the example with the key given above a cognitive task was solved by
exploiting already existing environmental resources. Distributed cognition
however, also includes another class of cases where cognitive tasks are solved
by the use of specially created cognitive artifacts.

The midwife’s wheel is a good example of such an artifact. The wheel
consists of two discs, one marked with the months of the year and the other
with the weeks 1 to 42 of a normal pregnancy. Given the date of conception,
the discs are aligned in accordance with a simple algorithm, and both the
due day and the current duration of the pregnancy can be read off from
the artifact. This artifact allows the user to substitute complicated mental
calculations with epistemic actions; she simply manipulates the disks and
reads off the result. Notice, that the artifact in this example does not en-
hance or strengthen cognition. Instead, mental calculations are substituted
with an entirely different task: the correct alignment of discs.

Artifacts might also change or influence the total outcome of a task. To
use an example most academics might have experienced, a talk delivered
by heart is different form a talk read from a manuscript. And a talk given
by the help of Power Point is something different again. Paper and Power
Point-presentations serve as excellent external substitutes for memory, but
they do more than that. The two artifacts offer different possibilities, they
make different things easy and hard, and that might change not only the
style of the talk, but also the content. In other words, cognitive artifacts
are not always neutral tools that simply make it easier for us to do, what
we have always done. They might in a more profound way change us and
influence the nature and content of the cognitive tasks we perform.

3 Cognitive artifacts in mathematics

It is not hard to find examples of cognitive artifacts used in mathematics.
The very basic operation of counting is commonly supported by external
scaffoldings in the form of tally marks, pebbles, fingers or other objects at
hand. Multiplication and other arithmetic operations can be supported by a
number of different devices such as written tables, counting boards, abaci,
computers, and calculation machines. All of these devices allow mental
calculations to be substituted by different types of epistemic actions; us-
ing written tables, calculations are substituted by perceptual and search
processes, using abaci and counting boards, calculations are substituted by
manipulation of physical counters in accordance with given algorithms, and
using computers, calculations are substituted by keyboard operations.

Written tables have been in use at least since the second millennium
BCE (where tables of multiplication, reciprocals, square- and cube roots
were used by the Babylonians (Kline, 1990, pp. 5)). The origin of the
abacus and counting boards are more uncertain. The oldest known counting
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board is the Salamis tablet from the fourth century BCE (Menninger, 1992,
p. 299), but the invention of such devices is probably much older; according
to linguistic evidence, primitive tallying boards were already used by the
Sumerian civilization in the fourth millennium BCE (Nissen et al., 1993,
p. 134). So it seems as if the use of physical artifacts and the embodied
strategy of substituting mental calculations with epistemic actions is an
integral part of mathematical cognition and has been more or less so from
the dawn of calculation.

The widespread use of such artifacts raise a number of interesting philo-
sophical questions, not least the question of impact, i.e., has the introduction
of such artifacts altered the practice and content of mathematics?

This question is especially pressing in current years as the use of one type
of physical artifact—electronic computers—might alter the mathematical
practice in a number of ways with the introduction of computer assisted
proofs, experimental mathematics, and new visualization techniques. The
mathematical community has not yet decided exactly what stand to take
on these issues, but it seems likely that an acceptance of one or more of
these new techniques will have an impact on both the epistemic standards
and the content of mathematics (Tymoczko, 1979).

3.1
Apart from physical calculating devices such as those mentioned above, the
most important artifacts in modern mathematics are written symbols. In
order to shed some light on the cognitive significance of the use of symbols, I
will begin with an in-depth cognitive analysis of the Hindu-Arabic numerals.
The Hindu-Arabic numerals are no doubt one of the most successful systems
of mathematical notation, and by gaining a better understanding of the
cognitive role played by the symbols used in the system we might get some
understanding of the role played by mathematical symbolism in general.

In one such analysis, Zhang and Norman (1995) compare the perfor-
mance of Hindu-Arabic, Greek alphabetic, and Egyptian hieroglyphic nu-
merals on multiplication tasks. Zhang and Norman conclude that the supe-
riority of the Hindu-Arabic numerals can (at least in part) be explained by
the fact that, compared to the other systems, they allow most of the steps of
the multiplication algorithm to be externalized; i.e., performed as epistemic
actions using pen, paper, and the numerals of the system in question.

Unfortunately, this analysis suffers from several weaknesses. Most im-
portantly, all three systems of numerals are compared on the same polyno-
mial algorithm for multiplication.1 I find this questionable, as it is unlikely

1In a numeral system with base x, a number a can be represented in polynomial form
as
∑
aix

i. In this representation the algebraic structure of polynomial multiplication of
two numbers a and b is: a · b =

∑
aix

i ·
∑
bjx

j =
∑∑

aix
ibjx

j =
∑∑

aibjx
i+j
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that either the Greek or the Egyptians actually used this algorithm. We
do not know much about how the Greeks did their calculations, but they
probably performed the actual calculation on abaci or counting boards, and
only used the alphabetic numerals as a way to record the result (Menninger,
1992, pp. 299). For this reason, the proper unit of cognitive analysis in this
case is the numerals and the counting board in combination.

The Egyptians on the other hand used a binary algorithm and not a
polynomial algorithm for multiplication.2 Using the binary algorithm with
Egyptian hieroglyphic numerals, multiplication can quite easily—and to a
large extend externally—be performed as a series of doublings and reduc-
tions. Thus, looking only at the ratio between internal and external work-
load cannot tell us why or if it is easier to use the Hindu-Arabic than the
Egyptian hieroglyphic numerals. Other factors, such as the total number of
operations performed, must be considered as well.

In order to get a better understanding of the unique qualities of the
Hindu-Arabic numerals, we might instead use the typology of numeral sys-
tems developed by Stephen Chrisomalis (2004, cf. our Table 1).

In this typology, the Hindu-Arabic numerals are characterized as posi-
tional and ciphered. We shall analyze these two characteristics one by one
starting with ciphering.

In comparison with cumulative systems, the advantage of ciphering is the
possibility of a much more compact way of writing numbers. The number
eight for instance can be written with a single symbol in the Hindu-Arabic
system: ‘8’, whereas it takes eight symbols to represent the same number in
the Egyptian hieroglyphic system: ‘IIIIIIII’, and four symbols using Roman
numerals: ‘VIII’.

Due to the compactness of the script, one would expect calculations in
general to take fewer operations in a ciphered than in a cumulative system.
Unfortunately very little empirical work has been done in this area, but the
hypotheses is backed up by at least one study (Schlimm and Neth, 2008),
where the ciphered Hindu-Arabic system is compared with the cumulative
Roman system. Using virtual agents to perform a large number of addition
and multiplication tasks in ways similar to human agents, Schlimm and
Neth found that the number of basic operations, such as perceptual steps,
attention shifts, and motor actions, was considerably more numerous when
using Roman numerals than when using Hindu-Arabic numerals.

The compactness of ciphered numerals however, comes at a price. In a
cumulative system, the value of each power of the base is represented by
a repetition of a specific symbol. So for instance, in Egyptian hieroglyphic

2Cf. (Katz, 1998, pp. 8); in the binary algorithm, the multiplier a is decomposed into
its binary representation

∑
ai2

i and the multiplicand b is multiplied with each term:
a · b =

(∑
ai2

i
)
· b =

∑
ai2

ib.
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Additive (sign-
value)
The sum of the value of
all the numerals gives
the total value of the
whole number

Positional
The position of each
numeral decides which
power of the base the
numeral is to be multi-
plied with.

Cumulative
Many signs per power
of the base. These are
added to obtain the to-
tal value of that power.

Egyptian hieroglyphic
Roman

Babylonian
sexagesimal cuneiform

Ciphered
Only one sign per
power of the base.
This sign alone repre-
sents the total value of
that power.

Greek alphabetic Hindu-Arabic

Multiplicative
Two components per
power, unit-sign(s) and
power-signs. These
are multiplied to give
the total value of the
power.

Chinese traditional Logically excluded

Table 1. Typology of numerical notation systems (redrawn with small
adjustments from Chrisomalis, 2004, p. 42).

system eight tokens of the symbol ‘I’ means eight, and eight tokens of the
symbol ‘

⋂
’ means eight tens (i.e., eighty) and so forth. In other words,

in a cumulative system there is an iconic likeness between the value of a
power and the number of signs used to represent this value. This is not so
in ciphered systems. The sign ‘8’ gives no clue to the fact that its value
is eight. In a ciphered system the numerals are conventional symbols, and
their values must be remembered. Or differently put: The numerals are
meaningless symbols until interpreted.

In sum, from a cognitive point of view the choice of a ciphered over a
cumulative system is in fact a trade-off, where a reduction in the number
of operations is obtained by increased demands for internal cognitive work
(cf. also Schlimm and Neth, 2008).

Turning to the positional character of the Hindu-Arabic system Zhang
and Norman (1995) might be right in pointing out that a positional system
allows for an easy separation of the power and base dimensions; the power of
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each numeral of a number is represented by its position, and the base value
by its shape. Due to this fact, calculations can easily be broken down into
two simpler tasks: 1) calculations involving only the numerals 0 through 9
and 2) the recording of the result of such calculations in the right positions
on the paper.

In ciphered, additive systems such as the Greek alphabetic both base and
power values are represented by the shape of the individual numeral. In the
Greek system eighty is represented by a single symbol ‘π’, and the reader will
have to infer both the base value—eight—and the power value—tens—from
the shape of the sign. Calculating using such a sign, you will either have to
separate the base and the power dimension in order to reduce the calculation
to simpler facts, or you will simply have to memorize the necessary tables
for all the numerals used in the system. As such systems need unique
numerals for each unit of each decimal order, the tables get very big, and
consequently memorizing them pose a considerable challenge to long-term
memory.3 Separating the dimensions on the other hand greatly increases the
demands on internal, mental work-load (cf. Zhang and Norman, 1995, for a
detailed analysis of the last). Either way, the written numerals of ciphered,
additive systems does not seem to offer much support for calculations.

In conclusion, the Hindu-Arabic numerals are a very special kind of
symbols. Unlike the symbols of ciphered, multiplicative systems, the Hindu-
Arabic numerals allow calculations to be performed largely externally as
series of epistemic actions, and unlike the numerals of cumulative systems,
they are conventional, i.e., abstract symbols that have no iconic likeness with
that, which they represent. Due to these characteristics, the Hindu-Arabic
numerals serve as a very effective cognitive tool. They allow calculations to
be (largely) externalized and performed as purely formal manipulations of
the symbols; you do not need to worry about the meaning of the symbol
as you calculate, you only need to remember the correct algorithms and
transformation tables, and then the symbols will take care of the rest. The
numerals, in other words, allow you to perform calculations as epistemic
actions in ways similar to those allowed by physical artifacts such as the
abacus or the midwife’s wheel. Only, when you use the numerals you have
to write down the transformations of the stings of symbols as you go along
instead of simply manipulating preexisting physical tokens.

This cognitive characteristic of the Hindu-Arabic numerals is particu-
larly interesting, as the very same characteristic applies to the symbols used
in modern mathematics. The symbols are (mostly) conventional signs that
have no likeness to that, which they represent. This allows computations to
be performed as series of epistemic actions, where the symbols are treated
as physical objects and manipulated according to strict, formal rules until

3The Greek system for instance has 27 different numerals, resulting in a multiplication
table with 729 entries
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a result can simply be read off from the paper. The modern symbols are
a cognitive artifact, allowing mathematical computation to be externalized
as a formal and meaningless game with uninterpreted symbols functioning
as physical tokens (De Cruz, 2005).

The power and enormous influence of this cognitive tool is witnessed by
the fact, that the formalist movement simply identified mathematics with
“manipulation of signs according to rules” (Hilbert, 1926, p. 381). From
my point of view, this is a mistake. The use of external cognitive artifacts
is simply a tool used to do mathematics, and one should not take the tools
for the trade. Although this particular cognitive strategy is at the heart of
modern mathematics, it does not exhaust what mathematics is. As we shall
see in the next section, other cognitive strategies are equally important.

3.2
With a few exceptions (such as Diophantus’s notation for powers Kline,
1990, pp. 138), abstract symbols apart from numerals were only introduced
to mathematics in the late 16th and (mainly) 17th century by mathemati-
cians such as François Viète, René Descartes, William Oughtred and John
Wallis.

The introduction of this new cognitive artifact has had a very clear
impact on both the epistemic standards and the content of mathematics.

As an example of the first, I will mention the use of formalizability as a
criterion on the acceptability of a proof. Although proofs are rarely given as
rigorous formal deductions, most mathematicians will only accept a proof if
it is somehow made probable that it could be formalized and given as a series
of purely formal transformations in a formal theory (cf. Tymoczko, 1979,
pp. 60). Such a criterion quite clearly only makes sense in a praxis involving
abstract symbols. Furthermore, it rules out many of the proofs created
before the introduction of abstract symbols, especially all proofs relying
on diagrams in a non-trivial way. In sum it seems clear, that the use of
abstract symbols have had an enormous impact on the epistemic standards
of mathematics, i.e., the standards used to judge whether a knowledge claim
is acceptable or not.

As an example of an impact on content, I will turn to geometry, where
the idea of substituting calculations with manipulation of abstract symbols
primarily was carried out within the paradigm of analytic geometry, founded
by Descartes and Pierre de Fermat in the 17th century. This new paradigm
quickly led to new and very powerful ways to solve problems which were
difficult or even impossible to solve by traditional synthetic means. Take the
advent of the calculus as an example; here the extremely difficult problems of
constructing tangents and determining areas were replaced by (more or less)
mechanical syntactic transformations of symbols. However, the paradigm
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of analytic geometry also led to a change in the conception of which objects
were accepted in geometry. In analytic geometry, any curve which can be
given an equation is accepted. This is clearly an expansion in comparison
to the traditional Euclidian framework, where only objects which can be
constructed using straight lines and circles were admitted. Ultimately, the
adoption of analytic methods led to the discovery of several curves (such as
space filling curves and continuous, but nowhere differentiable curves) which
were strictly impossible from a geometrical point of view. However, because
these objects could be expressed analytically they were accepted anyway
(and the geometrical intuition was rejected). So all in all, the introduction
of symbols as a cognitive artifact has had a clear impact on the content of
mathematics, i.e., which objects to accept.

A number of other types of impact could also be discussed. De Cruz
(2005) suggests, for instance, that abstract symbols might serve as a way
to ‘anchor’ semantically opaque concepts (such as square roots of negative
numbers) in concrete external representations. This idea is highly inter-
esting, but it is unfortunately slightly problematic. Abstract symbols are
only one of many ways to represent mathematical content. Square roots
of negative numbers can for instance be represented symbolically (as “i”),
rhetorically (as “the square root of minus one”) or even diagrammatically
using the complex plane. When it comes to computations, abstract symbols
are clearly superior to rhetoric forms of representation because symbols as
we saw above allow computations to be externalized and performed as epis-
temic actions. However, it is not clear that symbols are similarly privileged
when it comes to anchoring opaque content. In fact, complex numbers were
at first discovered and handled using purely rhetoric means (in Gerolamo
Cardano’s Ars Magna from 1545). So, De Cruz might be right in noting
that abstract symbols are in fact used to anchor opaque content, but it is
not clear that they are necessary means of doing so. Perhaps content could
be anchored just as well by purely rhetoric or other means.

4 Conceptual metaphor

The use of epistemic actions and physical cognitive artifacts implies that
human cognition is embodied in a very concrete sense. A disembodied mind
cannot put a key in her shoe or operate a tool such as the midwife’s wheel.
Our physical body offers possibilities and has limitations for interacting
with the surrounding world, and these constrains on our bodily interactions
condition which artifacts we can and cannot use.

But that is not all. Our body and basic bodily experiences also influence
our cognitive life in a much more profound way. As it turns out, we seem
to use basic life-world experiences as a way to structure abstract thinking.
This structuring is revealed by our heavy use of metaphors taking basic
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life-world experiences as their source-domain in our conceptualization of
abstract phenomena (Lakoff and Johnson, 1980).

Examples of such metaphors are easily found in everyday language. Take
for instance the expressions: “I couldn’t quite grasp what he was saying”,
“Everything he said just flew over my head”, and “Did you get it?” In all of
these examples ideas are conceptualized as physical objects, understanding
is conceptualized as grasping or holding such objects, and an exchange of
ideas is understood as an exchange of objects. Consequently, the situation
of attending a lecture can be understood as a situation, where the lecturer
is throwing objects to the audience. When objects are thrown from one
person to another, it might be difficult for the receiver to catch the objects,
the thrower should be careful to aim his throw at the receiver and so on.
In other words, something as abstract as learning and understanding can
be structured and understood using the basic bodily experience of someone
throwing things at us.

As pointed out in Lakoff and Johnson (1980, pp. 46) ideas can be con-
ceptualized using a wide range of other metaphors. Ideas can be seen as
living organisms; they can be born, mature, get old and die, and they can
come to fruition or be planted in someone’s mind. Ideas can be understood
as food; they can be hard to digest, half-baked, rotten, fresh, or hard to
swallow. Or ideas can be seen as cutting instruments or weapons: They can
be sharp, dull or cut right to the heart of matters.

All of these metaphors help us understanding and structuring the ab-
stract phenomena of ideas using well-known and concrete everyday expe-
riences. The various metaphors highlight different aspects of the target-
domain and offer guidance in different situations; When giving a lecture,
you should be careful to aim what you are saying at the audience in order
for them to catch your ideas, and when going to a debate (which is com-
monly conceptualized in terms of warfare!) it is wise to bring ideas at least
as sharp as those of your opponent.

The cognitive approach to metaphor was introduced in the late 1970’s,
most influentially by Lakoff and Johnson (1980). According to this ap-
proach, the structuring of a concept in terms of concrete experience is not
something exceptional or rare. In fact: “[. . .] metaphor is pervasive in ev-
eryday life, not just in language but in thought and action. Our ordinary
conceptual system, in terms of which we both think and act, is fundamen-
tally metaphorical in nature” (Lakoff and Johnson, 1980, p. 3).

A point of debate is the exact cognitive significance of such metaphors.
When we talk about ideas as objects using the metaphorical expression “I
couldn’t quite grasp what he was saying”, do we also think of ideas as ob-
jects, or is the metaphor merely a linguistic phenomenon? It is not very
hard to find examples of ‘dead metaphors’, i.e., metaphors which might
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once have had cognitive significance, but clearly do not have so any more.
Take for instance the expression: “I have examined 14 students today”.
The word ‘examine’ originates in the Latin word examen, which literally
means ‘tongue of a balance’. So, examining student is—or was—originally
a metaphor, where the process of judging the knowledge of a student was
described by comparing it to the process of weighing goods at the mar-
ketplace. Today however, most English speakers do not know the original
meaning of the word ‘examine’, and they do not think of balances or pro-
cesses of weighing when they use it. The word has simply obtained a new
meaning, and consequently the original metaphor is dead and has ceased
doing any cognitive work.

So, how do we know that not all of the metaphors discussed above are
dead? This is a very important question that needs to be answered before
the cognitive approach to metaphor and language can carry any philosoph-
ical weight.

The cognitive approach argues their case by putting forth different types
of evidence. One type of evidence is studies in linguistics. Most people
would probably not accept expressions such as: “That idea is hard to swal-
low, I fear it won’t grow at all”. The two parts of the sentence express the
same phenomena of disliking an idea, but still, the sentence seems to be
somehow inconsistent. The reason for this inconsistency is the fact that the
sentence contains two metaphors exploiting two different source-domains;
edibles and living organisms respectively. And although ideas can be un-
derstood as both edibles and organisms, they cannot be done so at the same
time. The metaphors used to conceptualize ideas must in other words be
applied in a coherent way. This suggests, that the analogies to basic ex-
periences expressed in the metaphors still have cognitive significance and
structure not only the way we talk about ideas, but also the way we think
about ideas.

Similarly, a sentence such as “that idea is full of vitamins” will probably
be understood immediately and effortlessly by most people familiar with
English, even if it is the very first time they hear the expression. This
suggests that the analogy exploited in the ideas-are-food-metaphor is still
active and allows us to use knowledge of nutritional facts to understand new
aspects of the abstract domain of ideas.

Apart from such linguistic evidence, the basic claim of the cognitive
approach is backed up by empirical evidence from neural science. A full
review of this evidence is unfortunately beyond the scope of this paper, so
I will restrict myself to a more thorough review of the evidence put forth in
connection to the metaphors of mathematics (below). The reader is referred
to Lakoff and Johnson (1999, pp. 36) for a comprehensive list of the different
types of evidence.
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5 Metaphors of mathematics

Imagine teaching school children the fact that a negative number multiplied
by a negative number gives a positive number. The children might simply
learn the rule: this is how it is, this is how we play the game of arithmetic.
But simply learning the rule does not give the children any comprehension
of why it might be so.

If the children are to understand why a negative number multiplied with
a negative number gives a positive number, you might start telling them
about the number line and explain multiplication in terms of movement
and locations in space. It might go something like this: Negative numbers
are opposite numbers. Where positive numbers are located to the right of
0, negative numbers are located at similar distances, but to the left of 0.
Multiplying any number b with a positive number a simply means walking
the distance from 0 to a, and then keep on walking until this distance has
been repeated a total of b times. Then the number located at the point
where you end up is the result of the multiplication. As negative numbers
are opposite numbers, multiplying any number a with a negative number
b, you will have to walk exactly the same distance as before, only in the
opposite direction. So, if a is a negative number located to the left of 0,
multiplying it with another negative number b, you will end up walking to
the right, and consequently you end up at a location inhabited by a positive
number. Hence, a negative multiplied by a negative gives a positive.

This story might explain why negative numbers multiplied by negative
numbers give positive numbers, but none of it is literal. Numbers are not
locations on a line, and multiplication is not movement. The explanation
making the formal operations meaningful is made up of metaphors, or, to be
more precise, it is an inference from one basic metaphor where arithmetic
is conceptualized as motion along a path and numbers as locations on the
path.

As pointed out by George Lakoff and Rafael Núñez, this metaphor is
only one out of three basic metaphors used to conceptualize arithmetic
(Lakoff and Núñez, 2000, pp. 54). In the other two, numbers are respectively
conceptualized as collections of objects and as objects constructed by other
objects. These conceptualizations are visible in expressions such as: “If you
add three and four, you get seven,” “If you put two and two together, you
get four,” “Five is made up of two and three,” and “If you take three from
seven, how much do you have left?” (examples from Lakoff and Núñez,
2000, pp. 54). Lakoff and Núñez also add a fourth metaphor, the measuring
stick metaphor, where numbers are conceived as locations on a measuring
stick. Based on the linguistic evidence, however, it is hard to distinguish this
metaphor from the more general metaphor, where numbers are conceived
as locations on a line or path.
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Lakoff and Núñez claim the basic laws of arithmetic, such as commuta-
tivity, associativity, and even closure of the natural numbers to be derived
from the structure of the source-domains of these metaphors. To take one
example, we know from basic experience that adding a collection of objects
to another collection of objects always results in a collection of objects.
When numbers are metaphorically conceptualized as collections of objects,
we can infer that the addition of two numbers must always result in a num-
ber, and consequently N must be closed under addition (Lakoff and Núñez,
2000, p. 60).

The exact status of this claim is unfortunately somewhat unclear. Is it a
genealogical claim, i.e., a claim about how the laws of arithmetic were once
established, or is it a psychological claim about how each individual person
understands mathematics? In either case more evidence is needed in order
to support it.

The use of metaphors in mathematics is not restricted to basic arith-
metics. Metaphors are frequently used in more advanced subjects as well.
Calculus for instance, draws heavily on metaphors of physical movement.
Although all central concepts such as function, continuity, differentiability
etc. are now defined in terms of sets, i.e., discrete and motionless entities, in
textbooks functions still oscillate, approach, tend to etc. (cf. Núñez, 2004,
for an interesting treatment of several examples from textbooks).

In the examples given so far all metaphors take life-world experiences
as their source-domain, but metaphors taking already accepted theories as
their source-domain also play an important part in both the expansion and
the unification of mathematics. As an example of the first, William R.
Hamilton’s use of mappings between geometry and algebra in his discovery
of the quarternions deserves mentioning (Pickering, 1995, cf.), for an inter-
esting analysis of this case). As an example of the second—unification—the
modern reduction of virtually all mathematical entities to sets is an obvi-
ous case. Numbers are not literarily, only metaphorically sets, lines are not
literarily infinite sets of points, and so on.

Turning to the question of the cognitive significance of the metaphors,
we shall continue the discussion opened above by reviewing some of the
empirical evidence used to argue, that the metaphors of mathematics have
real cognitive significance.

One line of evidence comes from the study of gestures. In short, there
seems to be a close link between gestures and speech, and it is believed that
gestures and speech both reflect the same cognitive processes. A study of
college professors teaching calculus suggests that the metaphors of move-
ment used by the professors are active, i.e., when the teachers use words
of movement they also think in terms of movement (Núñez, 2004, pp. 68).
In a revealing example, a professor describes how the values in an infinite
sequence oscillate between two fixed values. While he gives this description,
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he waves his hand from side to side and presses his thumb and index fin-
gers together as if he was holding a small object. The professor seems to
be thinking about the two bounding values as fixed locations in space, and
about the values in the sequence as a tiny object which is moving—literally
oscillating—between the two bounding locations.

The study of gestures gives strong support to the thesis, that the metaphors
used by the professors actually reflect how they think—at least in that par-
ticular situation. But, the teaching situation is a very special situation, and
quite often teachers use colorful metaphors for purely didactical reasons; the
abstract subject must be related to something well-known by the students.
This however, does not give us any proof that the professors still think in
terms of movement when they return to their offices and start doing math-
ematical research. The study of gestures cannot give us the final answer to
the fundamental question: To whom and when are the metaphors active?

Another line of evidence comes from experimental psychology and the
study of the human brain. A number of experiments suggest that at least the
natural numbers seems to be encoded in the form of some sort of magnitude.
Reaction time experiments for instance, reveal that the time it takes a
subject to judge whether a number represented in Hindu-Arabic digits is
larger or smaller than a given target depends on how close the given number
is to the target; the lesser the distance between target and given number,
the longer the reaction time (Dehaene et al., 1990). Furthermore, studies of
patients who have lost part of their mathematical capabilities due to injuries
of the brain suggest a close connection between basic arithmetic skills, body
maps, and spatial maps (Dehaene, 1997, pp. 189). This has been used to
support the view that at least basic arithmetic is closely connected to basic
life-world experiences of the body and physical space (Lakoff and Núñez,
2000, pp. 23).

This type of evidence should be treated with much care. The evidence
is still somewhat inconclusive, and in addition it is questionable to what
extend studies of the physical brain can tell us anything about mental phe-
nomena such as thinking and understanding. Does the (supposed) fact that
arithmetic is encoded in the same region of the brain as spatial- and body
maps really prove, that we understand arithmetic using bodily and spatial
experience? Even granted such an intimate relation between the physical
brain and understanding, the evidence only supports a limited connection
between life-world experiences and mathematics. Only arithmetic is (ap-
parently) located in the brain area in question, while other mathematical
capacities are not. This was, for instance, the case in a patient suffering
from acalculia (Hittmair-Delazer et al., 1995). Due to the effects of cancer
treatment the patient had lost the ability to solve even basic arithmetic
problems such as 2 + 3 and 3 · 4. Nevertheless, he was still able to solve ab-
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stract algebraic problems such as recognizing that (d/c)+a is not in general
equal to (d+a)/(c+a). Does this mean that arithmetic is closely connected
to life-world experiences, but that algebra is not? And does it prove that
all metaphors connecting algebra to space, the body, or physical objects are
dead, while metaphors of arithmetic are always alive?

The thesis that the metaphors of mathematics are always active and
determines the way mathematicians think, seems to me to be much too
strong to be defended. Furthermore, it focuses solely on one cognitive tool.
The above review of the cognitive tools used by mathematicians suggest
another more modest hypothesis to me: perhaps the cognitive tools, I have
reviewed, compliments each other. Mathematics can be done as a formal
game, where external symbols are treated and manipulated as meaningless
tokens of a cognitive artifact, or mathematics can be done as something
meaningful, where the meaning—at least in part—comes from cognitive
metaphors adding flesh and blood to the naked symbols.

As we have seen, the Hindu-Arabic numerals are conventional, abstract
symbols that have no resemblance of collections or any other objects the
numbers might signify. This allows for easy calculations: you do not need
to understand anything. As long as you know the formal rules, pen, paper,
and the written symbols will take care of the rest. But on the other hand,
the symbols and formal rules can be treated as something meaningful, when
we metaphorically conceive of numbers as collections, as locations in space
and so on. Similarly, calculus is formalized in set theory, which allows for
powerful formal calculations, but still, college professors use metaphors of
motion when they teach calculus in order to ground the students’ under-
standing of the abstract mathematical theory in bodily experiences.

The reader should keep in mind, that the above is only a description
of the cognitive behavior of mathematicians and students. The normative
aspect, i.e., how one ought to behave, falls outside of the scope of this paper.
The description of the cognitive behavior inspires at least one normative
question: Mathematicians seem to use metaphors, but should they keep
doing that or was it better if mathematicians practiced mathematics as a
meaningless, formal game?

6 Is mathematics special?

Finally, we might return to the overall theme of the conference PhiMSAMP-
3: is mathematics special? This is a very general question which could
be understood in many different ways. In this paper, we have seen that
mathematics is not special from an epistemic point of view. Mathematical
knowledge is obtained using the very same cognitive tools as many other
kinds of human knowledge.
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This might lead us to wonder whether mathematical knowledge consists
of necessary and absolute truths. One might argue that it does not matter
how we get to know, what we know: All mathematical truths are abso-
lute and universal, no matter how they are obtained. Such an absolutistic
stance seems hard to defend. As I have demonstrated above, cognitive tools
are not neutral. The cognitive tools we use are essentially anthropomor-
phic; our body and environment determine both which basic experiences
that are available to us as source-domain for conceptual metaphors, and
which physical artifacts it is possible for us to produce and operate. Human
knowledge is in a non-trivial way embodied, and thus shaped by the na-
ture and possibilities of our body and physical surroundings. And that goes
for mathematical knowledge as well. Consequently mathematics cannot be
absolute and universal—at least not in any strong sense of those terms.
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