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1 Introduction

The subject of this paper is whether or not revolutions occur in mathemat-
ics. We do not attempt to resolve this problem by arguing for or against the
existence of revolutions in mathematics. We want to look at the discussions
of the past thirty years from a meta-level. Furthermore, instead of settling
the discussion, we want to show what the useful aspects are that these dis-
cussions have produced to enrich a study of mathematical practices. We are
convinced that research on mathematical revolutions does indeed contribute
to such a study.

The paper consists of two major parts. First, we shall give an overview
of the discussion about mathematical revolutions and its results. Second,
we shall present the way in which Crowe can be fruitfully used by a rather
bold interpretation as a basis and framework for a study of the evolving
practice of mathematics in all its variety.

2 Overview

Following Kuhn’s seminal work on scientific revolutions, attempts have been
made to apply the Kuhnian framework to mathematics. The debate within
the community of mathematicians is even more passionate and tumultuous
than within the sciences in general. One could say that Kuhn himself has un-
chained some kind of revolution within the philosophy of science by putting
an end to the classical image of the continuous, linear and steady growth of
sciences. After Kuhn, the image of growth of sciences has obtained a more
humane face. And of course this didn’t come smoothly. The community of
philosophers and historians of science appeared to be at least touched by
it. The influence of The Structure of Scientific Revolutions lingered until
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many years later after its publication, in the subjects of symposia and on
postscripts (Kuhn, 1970).

Within the community of mathematicians, philosophers and historians
of mathematics, the debate is at least as tumultuous and is characterised
by explicit oppositions. Most diverging opinions exist about the so-called
revolutions within mathematics, ranging from philosophers who construct
their reasoning and their definition of a revolution in such a way that math-
ematics can escape from a revolutionary structure, to philosophers who cite
numerous facts from the history of mathematics (following Thomas Kuhn)
to demonstrate that mathematics does not differ from the revolutionary na-
ture that characterises the sciences. Kuhn himself did not really address
the history of mathematics and those that do may argue that the history
of mathematics indeed has experienced revolutions. The extreme positions
within the debate are represented by respectively Michael Crowe’s “Ten
‘laws’ concerning patterns of change in the history of mathematics” (1992)
and by Joseph Dauben’s “Conceptual revolutions and the history of mathe-
matics. Two studies in the growth of knowledge” (1992b).1 Dauben is one
of the philosophers who discussed the history of mathematics. He holds that
there are transitions in mathematical development that are ‘critical’ or ‘dis-
continuous’ enough in order to become worthy of the label of ‘revolution’.
Dauben holds that revolutions within mathematics cannot be ‘Kuhnian’ in
nature. The revolutionary quality of Cantorian set theory, non-Euclidean
geometries or Einstein’s Relativity Theory, for example, must be found in
another explanation that differs from the normal science-anomaly-revolution
scheme that typifies a Kuhnian revolution. Cantor’s creation of transfinite
numbers transformed mathematics by enlarging its domain from finite to
infinite numbers and the conceptual step from transfinite sets to transfinite
numbers represents a shift or a transformation that revolutionized mathe-
matics (Dauben, 1992b, p. 57). Non-Euclidean geometries did indeed not as
much as replace the Euclidean geometry and Einstein’s Relativity Theory
did not replace Newton’s mechanics, but they did affect, surpass and rele-
gate the domain of mathematics considerably (Van Kerkhove, 2005, p. 211).

The discussion on the revolutionary nature of mathematics is studied
by Caroline Dunmore—as part of her Ph.D. thesis—which resulted in the
argumentation that revolutions may occur in meta-mathematics, but not in
mathematics proper. Mathematics is conservative on the object-level and
revolutionary on the meta-level (Dunmore, 1992, p. 211).2 One could argue
that this distinction between meta-mathematics and mathematics proper is

1Cf. (Dauben, 1992a, p. 206) and (Van Bendegem, 2004, p. 230).
2Caroline Dunmore finished her Ph.D. thesis at King’s College London by June 1987.

Her supervisor was Donald Gillies, the editor of the collection on revolutions in mathe-
matics (Gillies, 1992).



Revolutions in mathematics 109

not really satisfying for the question of whether revolutions occur in mathe-
matics. How could a meaningful revolution occur in meta-mathematics that
does not in some way refer to or affect mathematics? Dauben (1992a,b) ar-
gues that the introduction of transfinite set theory transformed much more
than the meta-mathematical level. The same can be said about the in-
troduction of complex numbers, Non-Euclidean geometry, the discovery of
incommensurable magnitudes by the Greeks, and so on. In all of these
cases, there were certainly meta-level changes that were revolutionary, but
this affected both the practice of mathematicians and the content of math-
ematics.

If today we would be surprised by a denial of scientific revolutions within
the growth of sciences, within mathematics this denial still appears to be
obvious. Mathematics has traditionally been considered as the science (if a
science at all) that can attribute to itself the status of generating absolute
certainties, resulting in the idea that what once has been proven, will remain
so until eternity (Pourciau, 2000, pp. 297–298; Van Kerkhove, 2005, p. 210).

During the nineteenth and a substantial part of the twentieth century,
mathematics was considered as the science where revolutions never occur;
in so far it was considered as a science at all. Mathematics was taken to be
the science that only accumulated positive knowledge without revolution-
ary transitions and without rejection of the knowledge that was based on
old structures. The house of cards that mathematicians are building and
forever extending can, apparently, never be rebuilt. These ideas were ex-
pressed by among others the German mathematician and historian of math-
ematics Hermann Hankel in 1871, by Claude Bernard in 1927, by George
David Birkhoff in 1934 and by Clifford Truesdell in 1968 (Dauben, 1992a,
pp. 205–206). As a consequence, Crowe must protect the house of cards
by developing a system in which he himself describes the notion ‘revolu-
tion’ in such a restrictive way that it is not applicable to mathematics. In
his definition, an essential property of a revolution (in general) is the fact
that existing entities (be it a king, a constitution, a theory, a concept or a
mathematical structure) are knocked over, pulled down, and incontrovert-
ibly renounced. The tenth law indeed states that ‘Revolutions never occur
in mathematics’ (Crowe, 1992, p. 19).

When Cohen started writing his famous book Revolution in Science
(Cohen, 1985) he could not neglect the case of mathematics since he was not
convinced by the statement that revolutions never occur in mathematics.
Some examples from the history of mathematics (e.g. Descartes and Cantor)
were fruitful examples to explore the discussions concerning whether or not
revolutions in mathematics occur. For Cohen, the denial of the occurrence
of revolutions in mathematics is one of the reasons why he considers the
topic of revolutions in mathematics in his Revolution in Science (Cohen,
1985).
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The topic of revolutions in mathematics must, however, be considered
here because a number of mathematicians and historians of mathe-
matics have denied that revolutions can ever occur in mathematics
(Cohen, 1985, p. 489).

It is not the purpose in his article to try to settle the question of whether
or not revolutions have actually occurred in mathematics. However it is
of great interest to explore the ways in which some major innovations in
mathematics have been considered as revolutions. In his Revolution in
Science revolutions in mathematics are not generally discussed, although
some attention is paid to the Cartesian revolution in mathematics (Cohen,
1985, pp. 505–507) and mention is made of the revolutionary aspects of
the nineteenth century probability theory and statistics and the radically
new set theory of Georg Cantor (Cohen, 1985, pp. 319–324). Cohen men-
tioned the unpublished lecture notes on history of mathematics from 1982
by Hawkins who states that revolutions in mathematics occurring when the
method of solving mathematical problems are radically changed on a large
scale. In this sense, a revolution occurred in the seventeenth century with
Descartes as the central figure in initiating this evolution in mathematics.
Hawkins describes—with respect to content and influence—Descartes’s Ge-
ometry (1637) as the major work in the transition from ancient to modern
mathematics. Indeed, the work of Descartes did not involve a ‘rejection’ of
ancient mathematics (in the sense that for example Euclid’s Elements were
declared false) but his work did involve a rejection of the methods by which
ancients solved problems. Descartes—and his contemporaries—introduced
new methods. Mathematical problems should be reduced to the symbolic
form of equations and the equations should be used to effect the resolution.
Hence, the introduction of these new methods altered the nature of the
problems posed and ultimately radically altered the scope and content of
mathematics. This sounds indeed revolutionary.

Cohen mentioned other philosophers, mathematicians and historians of
mathematics who discerned revolutions in mathematics, e.g. Fontenelle (the
first author who applied the word revolution to the history of mathematics),
Kant, Cantor, Bell, Kline, Dyson, Mandelbrot, Dauben, among others. As
there is a difference among mathematicians concerning the occurrence of
revolutions in the domain of mathematics, Cohen mentioned also the work
of Fourier, Hankel, Claude Bernard, Truesdell, Boyer, Raymond Wilder and
Crowe who stated that in mathematics there has never yet been a revolution
in mathematics.

For Donald Gillies (1992) who situates himself rather in the direction
of Dauben, the whole debate turns around a semantic discussion wherein
the meaning of the notion ‘revolution’ is obviously crucial. ‘Revolution’ is
a concept that belongs to the framework of political theory and therefore it
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is used in sciences and mathematics as a metaphor. As a consequence, the
debate on the existence of revolutions is a semantic discussion that slides
away from its original theme (Corry, 1993, p. 95). Not only the concept
‘revolution’ is undetermined, even the concept ‘mathematics’ is within the
discussion subject to fluctuations (McCleary, 1993, p. 995). Even more, next
to the fluctuations in the interpretation of what is the object of mathemat-
ics and what belongs to the meta-level, there is the discussion about which
mathematical paradigm applies. According to Pourciau (2000), the whole
debate takes place within a specific particular paradigm, which he calls the
“classical paradigm”. The classical paradigm determines which mathemat-
ical assumptions are true or false and by doing so logical inconsistencies are
excluded (Pourciau, 2000, p. 300). Within the classical paradigm, the dis-
cussion then takes place at the semantic level. A good example within this
discussion is of course the definition of revolution itself by Crowe, as cited
above. However, Crowe makes the following remark on the phenomenon
of non-Euclidean geometry: this would certainly have resulted in a revo-
lutionary change in views as to the nature of mathematics, which meant
a revolution within the ‘philosophy of mathematics’. Later on, Dummore
will use precisely this argument to situate revolutions at the level of values
related to the nature of the mathematical objects. Crowe will neverthe-
less stick to the fact that this is no revolution ‘within’ mathematics itself
(Dauben, 1992a, p. 207). Joseph Dauben, on the other hand, explores the
history of mathematics to demonstrate where revolutions actually do occur
within mathematics. He has studied in depth a number of historical devel-
opments and states clearly that he is a defender of the idea that revolutions
do exist within mathematics.3

To the question of whether or not revolutions occur in mathematics,
my answer is an emphatic “yes”. (Dauben, 1992a, p. 229).

Finally, there is Pourciau (2000) who believes that the discussion be-
tween Crowe and Dauben on the notion of revolution, only existed at the
semantic level. Crowe and Dauben represent two distinguished positions
within the history of mathematics. Crowe proposed as a law that revo-
lutions never occur in mathematics, while Dauben maintained that such
revolutions do occur and gave examples. However, to Pourciau, no ‘real’
controversy exists. The so-called controversy exists only at the semantic
level, the level of the meaning of the term revolution. When they interpret
the word revolution in the same way, as a Kuhnian revolution, where re-
sults from the old paradigm are rendered meaningless or untrue in the new

3Dauben studied among others the independent discovery of the infinitesimal calculus
by Newton and Leibniz in the 17th century, the calculus by Cauchy in the 19th century
and the creation of the non-standard analysis (NSA) by Abraham Robinson in the 20th
century (Dauben, 1992a).
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paradigm, then they agree that Kuhnian revolutions are inherently impos-
sible in mathematics (Pourciau, 2000, p. 299). Pourciau himself wants to
go beyond this ‘semantic’ discussion how to redefine revolution so that it
might become a useful notion in mathematics. Pourciau defends that ‘noth-
ing in the nature of mathematics logically prevents a Kuhnian revolution’
(Pourciau, 2000, p. 301). Therefore he has to explain what a Kuhnian rev-
olution means. Referring to Kuhn’s The Structure of Scientific Revolutions
(Kuhn, 1970, p. 92) a revolution is characterized by ‘noncumulative devel-
opmental episodes’ in which a scientific community, having fallen into crisis,
rejects its established paradigm and chooses a new paradigm to guide its
specific practice. In such a noncumulative paradigm shift, some truths of
the old paradigm become unintelligible, unresolved or false under the new
paradigm. Those old truths do not translate into new truths and are lost in
the new paradigm. There are no translations of the old conception which
are true statements in the new conception. Pourciau now defends the idea
that a noncumulative shift is not in contradiction with the nature of math-
ematics. He states that revolutions in mathematics are logically possible
(if one wants to question also the classical paradigm), actually possible and
historically possible. The case put forward by Pourciau is the development
of the activity called intuitionist mathematics as proposed by the Dutch
mathematician L. E. J. Brouwer in 1907. This mathematical system is in
Pourciau’s view incommensurable with classical mathematics—or would be
as it is depicted ad a failed revolution in the course of history. According to
Brouwer, the seat of mathematical activity resides in the individual mind
which has a primordial intuition of time—in terms of its continuity—but
also its discreteness, that is, its falling apart into a ‘twoity’—the now and
the past—in the passing of an instant. From this basic intuition, the mind
of a human being, step by step, builds mathematics. These steps of hu-
man beings are finite. Hence there are no completed infinite constructions.
Because every intuitionist assertion points to the completion of a finite con-
struction, no infinite object can be the result of such a human construction.
As a consequence certain classical theorems are no longer theorems when
translated to intuitionist terms. Pourciau elaborated on the law of the ex-
cluded middle. Other theorems cease to be meaningful statements, e.g.
when explicitly appealing to infinite expansions or sets.

What Pourciau brings to the discussion of whether or not revolutions
occur in mathematics is that he goes beyond the semantic discussion on the
notion of revolution. Referring to Kuhn’s notion of revolutions, Pourciau
upholds the logical possibility of a revolutionary mathematical transition
into intuitionism. He also advances the thesis that Brouwer’s intuitionism
failed to convert the classical community due to contingent factors such
as injudicious technical moves by and strategic choices against Brouwer
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(Van Kerkhove, 2005, p. 214). With the example of Brouwer’s intuitionism,
Pourciau demonstrates how a possible Kuhnian revolution has even been
avoided in the course of history (Pourciau, 2000, p. 303).

Actually we see a development where a deepening of the history of math-
ematics can reveal new perceptions. The American historian of mathematics
Crowe seems to be with his Ten ‘laws’ one of the last ones to try to pre-
serve the traditional ideas about mathematical knowledge. In his footsteps
we also see the work of Caroline Dunmore who considers revolutions on the
object-level of mathematics as impossible, but who does accept them at
the meta-level of mathematics. The meta-level then consists of the meta-
mathematical values that exist within a community, concerning the purpose
and the method of mathematical objects, and of the general values concern-
ing their nature (cf. the debate on the ontological status of mathematical
objects).

Whatever one’s position in the debate, one must note that any judgment
on Crowe’s tenth ‘law’ Revolutions never occur in mathematics depends on
the meaning of the concepts of revolution and of mathematics. This obser-
vation has already been mentioned by Crowe himself who stressed the fact
that the preposition in is crucial, for, as a number of examples make clear,
revolutions may occur in mathematical nomenclature, symbolism, meta-
mathematics, metaphysics of mathematics, methodology, standards of rigor,
historiography of mathematics, values and mathematics and philosophy of
mathematics, but that does not imply that they occur in mathematics it-
self. Here the question can be put forward that if revolutions can occur in
mathematical nomenclature, symbolism, meta-mathematics, metaphysics of
mathematics, methodology, standards of rigor, historiography of mathemat-
ics, etc. . . . , what is left in mathematics when we strip all those aspects of
mathematics away.

So, where does that leave us? With nothing but an inconclusive debate
that should preferably be abandoned? Or is a different perspective required?
As it happens, there is an important source, that has not been mentioned so
far, and that could provide a creative way out: the works of Imre Lakatos.4

It is indeed rather striking that in the revolutions-in-mathematics discussion
his name is rarely mentioned (notwithstanding the fact that Donald Gillies
was his pupil). Part of the key of a possible answer to this puzzle is that
Lakatos clearly made a distinction between development and growth in the
sciences on the one hand and in mathematics on the other hand. It is
sufficient to look at the titles of some of his papers on (the philosophy of)
mathematics to see that his views are not a variation on Kuhnian themes,

4We are referring here to the “mathematical” Lakatos and not to the “scientific” one.
The latter Lakatos is first and foremost a pupil of Karl Popper, but the former one is
heir to the works of George Pólya, including its Hegelian flavour. This however does not
exclude a possible application of Popper’s approach to the growth of mathematics, as
Teun Koetsier (1991) has shown.
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but rather a new vocabulary on its own: “A renaissance of empiricism in
the recent philosophy of mathematics?”, “What does a mathematical proof
prove?” (not published during his lifetime), and “The method of analysis-
synthesis” (although the title is not his own, it fits the content quite well).5

And, of course, not to be forgotten, the seminal “Proofs and Refutations”.
No talk about (grand) revolutions is to be found here but rather a de-

tailed analysis of microfeatures of the history and development of mathemat-
ical proofs. A proof is proposed, it is refined, hidden lemmas are revealed,
made explicit, incorporated, a new proof proposed and the process can be
repeated. It is quasi-empiricist because a process of proofs and refutations
is at work or, as the subtitle of “Proofs and Refutations” states: The Logic
of Mathematical Discovery.

So, in what sense, could Lakatos’s work present a way out? It is unde-
niably true that the distance between the macrolevel where revolutions are
to be situated and the microlevel reduced to the search and improvement of
mathematical proofs, is indeed immense and seems hardly bridgeable. But
what if the microlevel is enriched, what if more elements of what mathe-
maticians do in their daily business, are added so that a richer mathematical
picture emerges, for we believe that such additional elements are an integral
part of mathematics? Might such an “intermediate” description not make
it easier to help to decide the matter whether yes or no revolutions occur
in mathematics? The bold conjecture we put forward in the next section is
that Crowe’s Laws can be read as such bridge principles.

3 Crowe as a basis and outline

In this section we propose to have a second look at Crowe’s laws and to
investigate whether they could serve as a basis and outline to study math-
ematical practices. Our proposal is meant to stimulate discussions about
and research of the full mathematical practices by interpreting these laws
as statements about different types of (local) changes in mathematics. In
other words, they are worthy of study not with a view to their justification
or refutation within some philosophical framework but solely with a view to
obtain a more complete descriptive study of mathematical practices. Each
‘law’ can be considered as a topic to set up a comparison between mathe-
matics and the sciences, thus illuminating the relevant features that such a
full-fledged theory of mathematical practices should study. Let us first of
all recapitulate Crowe’s ten laws (Crowe, 1992, pp. 16–19):

1. New mathematical concepts frequently come forth not at the bidding,
but against the efforts, at times strenuous efforts, of the mathemati-
cians who create them.

5All these papers can be found in Worrall and Currie (1978).
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2. Many new mathematical concepts, even though logically acceptable,
meet forceful resistance after their appearance and achieve acceptance
only after an extended period of time.

3. Although the demands of logic, consistency, and rigour have at times
urged the rejection of some concepts now accepted, the usefulness of
these concepts has repeatedly forced mathematicians to accept and to
tolerate them, even in the face of strong feelings of discomfort.

4. The rigour that permeates the textbook presentations of many areas
of mathematics was frequently a late acquisition in the historical de-
velopment of those areas, and was frequently forced upon, rather than
actively sought by, the pioneers in those fields.

5. The ‘knowledge’ possessed by mathematicians concerning mathemat-
ics at any point in time is multilayered. A ‘metaphysics’ of math-
ematics, frequently invisible to the mathematician yet expressed in
his writings and teaching in ways more subtle than simple declarative
sentences, has existed and can be uncovered in historical research or
becomes apparent in mathematical controversy.

6. The fame of the creator of a new mathematical concept has a power-
ful, almost a controlling, role in the acceptance of that mathematical
concept, at least if the new concept breaks with tradition.

7. New mathematical creations frequently arise within, and depend in
the mind of their creators upon, contexts far larger than the preserved
content of these creations; yet these contexts, for all their original im-
portance, may impede or even prohibit the acceptance of the creations
until they are removed by the mathematical community.

8. Multiple independent discoveries of mathematical concepts are the
rule, not the exception.

9. Mathematicians have always possessed a vast repertoire of techniques
for dissolving or avoiding the problems produced by apparent logical
contradictions, and thereby preventing crises in mathematics.

10. Revolutions never occur in mathematics.

As said, the first thing that is in our view absolutely striking about these ten
statements, exception made perhaps and somewhat obviously for the tenth
law, is that they highlight essential features of mathematical practices seen
as a complete process. Not merely the end results are referred to, as, e.g.,
in the 7th law—no mention shall be made about the creator or the creation
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process in the end result—but nearly every aspect of what a mathematician
practices when doing mathematics. The origin of and resistance to new
concepts, the fact that multiple discoveries occur over and over again, the
elimination of anomalies, etc., all refer to moments in the mathematical
process, different from the final moment or end result.

The second thing that is absolutely striking is that, if in the first nine
laws “mathematical” and “mathematics” is replaced respectively by “scien-
tific” and “science”, few would disagree with the resulting laws: the impor-
tance of the growth of scientific concepts, the resistance to new scientific
concepts, the acceptance of new scientific concepts, the curious phenomenon
of multiple discoveries, the objectivity of scientific laws that do not refer to
specific scientists, the different techniques that allow to deal with inconsis-
tencies and contradictions in scientific theories and so on. Of course, the
question then forces itself upon us: if that is indeed the case, why then
“deny” that mathematical revolutions occur as well? The first nine laws
make no distinction between science and mathematics, and revolutions in
science are generally accepted by philosophers of science. As nearly all
philosophers see mathematics as different from science, this implies that
some basic, fundamental or essential property needs to be found that can
make such a distinction, to start with on the level of mathematical and
scientific practices.

The Lakatosian key, as it were, to the solution is, we believe, to be
found in the 4th law. The development of rigour makes reference to the
most important (though not unique) element in mathematical practice, viz.
proofs, as Lakatos rightly emphasized. Of course, one might cautiously
claim that this law talks about mathematical proofs as there should be
a law on such entities. After all, missing out proofs would be a serious
shortcoming. As we already made one bold conjecture, let us add another
one to it: the ten laws Crowe formulated, exception made for the tenth
law itself, should all be interpreted with reference to the role they play in
the process of finding, constructing, rejecting, and/or refining proofs. In
different words, we claim the following: mathematical practice is composed
of a set of different types of activities, but they are all related to the one
core activity, which is the “proof business” with its possibly revolutionary
dynamics. What follows is a closer examination.

The first three laws all refer to (mathematical) concepts. One of the
most important elements in the process of constructing a proof for a given
statement is the search for the “right” set of concepts to be used in the
proof. A perhaps somewhat trivial example is this: give an easy proof
that the equation 12445454545x2 + 789878823823x−989086789237921 = 0
has no solutions in the integers. One could, of course, follow the standard
procedure for calculating the solutions of a quadratic equation, but, once
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one realizes that the core concept to be used here is “odd-even”, then it is
immediately obvious. The sum of the two terms involving x is always even
as the coefficients are both odd, whereas the last term is odd, hence the sum
can never be zero, QED. This simple example also shows that the questions
what concepts are relevant in what context, is itself a hard problem. And,
of course, it will happen that some concept is truly useful in the framework
of a proof, but meets resistance if the concept is considered as a concept on
its own. One thinks immediately of the introduction of the square roots of
negative numbers tolerated within the context of polynomial equations of
third degree, but considered “silly” outside of it (an example, by the way,
that Crowe himself refers to, cf. p. 16), as Cardano himself testifies. When
discussing the famous square root of −15, he refers to “mental tortures that
one has to put aside” (Cardano, 1545, p. 219) and the famous quote that
“so progresses arithmetic subtlety the end of which, as is said, is as refined
as it is useless” (Cardano, 1545, p. 221).

The fourth law and the ninth law form a nearly obvious pair from the
viewpoint of proofs. Start from the ideal situation from a formal logical
position. Proofs in that context, it is generally understood, are represented
by an ordered list of formulas, involving premises, axioms, outcomes of the
application of formal rules, and such that the last formula of the list is the
theorem to be proved. We all know, though perhaps some of us are not all
too keen to emphasize it, that “real” mathematical proofs hardly ever reach
this high quality level. (The usual claim is that the first chapters of any
introductory book in whatever area of mathematics satisfy this standard,
but from the third chapter onwards the standard is left behind). Seen from
this angle, the fourth law sets a standard, so difficult to meet, that is far
more interesting to develop subtle techniques that allow the mathematician
to deal with problems such as the occurrence of contradictions, where the
logical ideal has nothing to contribute, except the rule that inconsistencies
should quite simply not occur.

The sixth, seventh, and eight laws refer, in this interpretation, to the
social organization of, what we propose to call, a proof community (thus,
by the way, making a distinction with a scientific community). A trivial
observation: proof implies statement to be proved. The next question is
equally obvious: what statement are we talking about? In less banal terms:
what mathematical problems are interesting enough to merit our attention
and to invite our attempts to (dis)prove it? Why, e.g., so much attention
for the Riemann hypothesis (RH)? Among the manifold reasons that can
be produced, let us just mention one: there is at this moment already
a wealth of statements of the form “If the RH holds, then Φ”. Imagine
the day that RH is proved: all of a sudden, all these theorems transform
into quite simply “Φ”. It needs expert mathematicians—“of fame”, to use



118 K. François, J. P. Van Bendegem

Crowe’s expression—to identify these interesting statements and, hence,
the importance of the 1900 speech of David Hilbert, outlining the research
agenda for a century to come. Given this rough picture, it follows that, if
such figures as Klein, Hilbert or Poincaré “declare” that this or that problem
should be solved, then a host of mathematicians will actually take up the
invitation. Little wonder that multiple discoveries are made. Of course,
much more needs to be said here, but we do believe that these laws too can
be seen as relevant to proof practices.

This leaves us finally with the fifth law, perhaps the most intriguing
one. From the proof viewpoint, it seems obvious that different layers are re-
quired: the search for a proof and related concepts involves heuristics, proof
search methods. As in many cases such techniques become interiorized, it
is quite understandable why there is so much talk about mathematical in-
tuition (whether given by birth as God’s gift or as a genetic code, or the
result of a long and hard training process or, more likely, a combination of
both). To identify interesting problems, be they internal to mathematics
or with a view to possible applications, requires having a broad picture of
the mathematical domain, how it relates to other areas of scientific inter-
est, and how mathematics connects to society at large. Just one example:
almost every mathematician knows the “feeling” (really no other term for
it) that a specific proof of some statement is not the “right” proof. It is,
e.g., too clumsy, too long-winded, or somehow arbitrary. Perhaps this idea
is no more than a particular state of mind of the mathematician, but, at the
same time, it does feed the idea that the proof is “out there” somewhere to
be “discovered”. Thus, this proof practice “feeds” a particular metaphysi-
cal view that supports and stimulates the mathematician’s search and that
definitely should be taken into account.

We repeat that, at this stage of our argument, no effective theory of
mathematical practice has been presented but rather a list of ingredients,
necessary to make the undertaking succeed. We hope to elaborate further
on these matters; more specifically, we believe that the approach of Reviel
Netz (1999) and the background furnished by Jerry A. Fodor (1983), roughly
identifiable as “cognitive history of mathematics” will prove to be quite
fruitful.

4 Conclusion

Let us summarize our findings. In the first place, we demonstrated the cu-
rious nature of the discussion about the occurrence of revolutions in math-
ematics. We noted that the different positions in the debate are highly
dependent on the meaning of both terms, viz. mathematics and revolution.
Although the impression might be that the discussion seems to be rather
sterile, we defend the thesis that the fruitfulness of the research concern-
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ing revolutions and mathematics consists in the fact that the discussion
need not settle the basic question “Are there or are there not revolutions in
mathematics?”, but that it stimulates the study of mathematical practices.

In the second place, as a positive piece of evidence for the above claim,
the work of Crowe is used as such a frame of reference to study mathematical
practices. Each of his famous ten ‘laws’ can be considered as a topic to set
up a comparison between mathematics and the sciences as we showed by
emphasizing the importance of mathematical proofs and all the elements
in mathematical practice it ties up with. Although the laws in themselves
are equally applicable to mathematics and the sciences, the characteristic
element is that they can be interpreted in mathematics as all related to
proof, whether in the context of the search and/or creation of proofs or of
formulation, presentation, and importance.

We reiterate the observation at the end of the previous section. We have
now brought together a set of ingredients to prepare the dish that will be
called “A full-fledged theory of mathematical practice”. We are quite sure
that without any of the ingredients, the result will be disappointing. It
remains to be shown that they are sufficiently good “chefs” out there, who
will guarantee a splendid meal.
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