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1 Introduction
Toutes les grandes personnes ont d’abord été des enfants

(Mais peu d’entre elles s’en souviennent.)
Antoine de Saint-Exupéry, Le Petit Prince.

This paper is an attempt to launch a new and somewhat unusual research
programme aimed at gaining a better understanding of the specific nature
of mathematical practice. I propose to systematically record and analyse
logical difficulties experienced—and occasionally overcome—by children in
their early learning of mathematics. Quite naturally, this limits my study
to analysis of recollections of my fellow mathematicians and to interviews
with so-called “mathematically able” children—only they posses an ade-
quate language which allows them to describe their personal experiences.
My approach is justified by the success of Vadim Krutetskii’s (1976) clas-
sical study of mathematically able children. His book provides remarkable
insights into mathematical thinking, and adult professional mathematicians
instantly recognise themselves in Krutetskii’s young subjects.

I am a mathematician and restrict myself to describing hidden structures
of elementary mathematics which may intrigue and—like shadows in the
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at Nesin Mathematics Village in Şirince, Turkey, in July 2008. The final version was
prepared during my visit to the Bilgi University, Istanbul, in Spring 2009. I am grateful
to all my colleagues at Bilgi and especially to fantastically hospitable staff of Santral-
residence. My work on this paper was partially supported by a grant from the John
Templeton Foundation. The opinions expressed in this paper are those of the author and
do not necessarily reflect the views of the John Templeton Foundation.
Finally, my thanks go to the blogging community—I have picked in the blogosphere some
ideas and quite a number of references—and especially to numerous (and mostly anony-
mous) commentators on my blog, especially to my old friend who prefers to be known
only as Owl.
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night—sometimes scare an inquisitive child. I hope that my notes could
be useful to specialists in mathematical education and in psychology of
education. But I refrain from making any recommendations on mathematics
teaching. For me, the primary aim of my project is to understand the nature
of hardcore mainstream “research” mathematics.

I hope that my proposal provides an answer to the question in the title
of the conference: “Is mathematics special?” Of course it is! The em-
phasis on child’s experiences makes my programme akin to linguistic and
cognitive science. However, when a linguist studies formation of speech in
a child, he studies language, not the structure of linguistic as a scientific
discipline. When I propose to study formation of mathematical concepts in
a child, I wish to get insights into the interplay of mathematical structures
in mathematics. Mathematics has an astonishing power of reflection, and
a self-referential study of mathematics by mathematical means plays an in-
creasingly important role within mathematical culture. I simply suggest to
make a step further (or step aside, or step back in life) and take a look back
in time, in one’s child years.

Some very incisive comments from anonymous referees of this paper
helped me to better specify its scope, and I reiterate: (1) I am neither
a philosopher nor a psychologist. (2) This paper is not about philosophy
of mathematics, it is about mathematics. (3) This paper is not about
psychology of mathematics, it is about mathematics. (4) This paper is not
about mathematical education, it is about mathematics. (5) But this paper
has a secondary purpose: it is an attempt to trigger the chain of memories
in my readers. Every, even the most minute, recollection of difficulties and
paradoxes of their early mathematical experiences are most welcome.

2 Adding one by one

My colleague EHK told me about a difficulty she experienced in her first
encounter with arithmetic, aged 6.1 She could easily solve “put a number
in the box” problems of the type

7 +� = 12,

by counting how many 1’s she had to add to 7 in order to get 12 but struggled
with

�+ 6 = 11,

because she did not know where to start. Worse, she felt that she could not
communicate her difficulty to adults. Her teacher forgot to explain to her
that addition was commutative.

1EHK is female, English, has a PhD in Mathematics, teaches mathematics at a highly
selective secondary school.
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Figure 1. L’Evangelista Matteo e l’Angelo. Guido Reni, 1630–1640. Pina-
coteca Vaticana. Source: Wikipedia Commons. Public domain. Guido Reni
was one of the first artists in history of visual arts who paid attention to
psychology of children. Notice how the little angel counts on his fingers the
points he is sent to communicate to St. Matthew.

Another one of my colleagues, AB,2 told me how afraid she was of sub-
traction. She could easily visualise subtraction of 4 from 100, say, as a stack
of 100 objects; after removing 4 objects from the top, 96 are left. But what
happens if we remove 4 objects from the bottom of the stack?

A brief look at axioms introduced by Dedekind (but commonly called
Peano axioms) provides some insight in EHK’s and AB’s difficulties.

Recall that the Peano axioms describe the properties of natural numbers
N in terms of a “successor” function S(n). (There is no canonical notation
for the successor function, in various books it is denoted s(n), σ(n), n′, or
even n+ +, as in popular computer languages C and C++.)

Axiom 1 1 is a natural number.

Axiom 2 For every natural number n, S(n) is a natural number.

2AB is female, Turkish, has a PhD in Mathematics, teaches mathematics in a research-
led university. She was 6 years old at the time of that story.
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Axioms 1 and 2 define a unary representation of the natural numbers: the
number 2 is S(1), and, in general, any natural number n is

Sn−1(1) = S(S(· · ·S(1) · · · )) (n− 1 times).

As we shall soon see, the next two axioms deserve to be treated separately;
they define the properties of this representation.

Axiom 3 For every natural number n other than 1, S(n) 6= 1. That is,
there is no natural number whose successor is 1.

Axiom 4 For all natural numbers m and n, if S(m) = S(n), then m = n.
That is, S is an injection.

The final axiom (Axiom of Induction) has a very different nature and is best
understood as a method of reasoning about all natural numbers.

Axiom 5 If K is a set such that 1 is in K, and for every natural number n,
if n is in K, then S(n) is in K, then K contains every natural number.

Thus, Peano arithmetic is a formalisation of that very counting by one that
EHK did, and addition is defined in precisely the same way as EHK learned
to do it: by a recursion

m+ 1 = S(m); m+ S(n) = S(m+ n).

Commutativity of addition is a non-trivial (although still accessible to
a beginner) theorem. To force you to feel some sympathy to poor little
EHK and to poor little AB, I reproduce verbatim its proof from Edmund
Landau’s famous book Grundlagen der Analysis (1930).

3 Landau’s definition of addition

I use notation from Landau’s (1966) book:

S(n) = n′.

Landau’s proof consists of two self-contained Theorems, 4 and 6, at the
very beginning of his book. Although this is not emphasised by him, the
two theorems are not using Axioms 3 and 4. Landau starts by defining
addition:

Theorem 4 (and at the same time Definition 1) To every pair of
numbers x, y, we may assign in exactly one way a natural number,
called x+ y, such that

(1) x+ 1 = x′ for every x,
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(2) x+ y′ = (x+ y)′ for every x and every y.

Proof. (A) First we will show that for each fixed x there is at most
one possibility of defining x + y for all y in such a way that
x+ 1 = x′ and x+ y′ = (x+ y)′ for every y.

Let ay and by be defined for all y and be such that

a1 = x′, b1 = x′, ay′ = (ay)′, by′ = (by)′ for every y.

Let M be the set of all y for which

ay = by.

(I) a1 = x′ = b1; hence 1 belongs to M.

(II) If y belongs to M, then ay = by, hence by Axiom 2,

(ay)′ = (by)′,

therefore
ay′ = (ay)′ = (by)′ = by′ ,

so that y′ belongs to M.

Hence M is the set of all natural numbers; i.e., for every y we have
ay = by.

(B) Now we will show that for each x it is actually possible to define
x+ y for all y in such a way that

x+ 1 = x′ and x+ y′ = (x+ y)′ for every y.

Let M be the set of all x for which this is possible (in exactly one
way, by (A)).

(I) For x = 1, the number x+ y = y′ is as required, since

x+ 1 = 1′ = x′,

x+ y′ = (y′)′ = (x+ y)′.

Hence 1 belongs to M.

(II) Let x belong to M, so that there exists an x+ y for all y. Then
the number x′ + y = (x+ y)′ is the required number for x′, since

x′ + 1 = (x+ 1)′ = (x′)′

and
x′ + y′ = (x+ y′)′ = ((x+ y)′)′ = (x′ + y)′.

Hence x′ belongs to M. Therefore M contains all x. q.e.d.
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It is time to pause and ask a natural question: why is the proof of
consistency of the inductive definition of addition is so difficult? David
Pierce (2009) published a timely reminder about this conundrum of the
foundations of arithmetic:

A set with an initial element and a successor-operation may admit
proof by induction without admitting inductive or rather recursive
definition of functions.

Historically, this observation was made explicit by Dedekind (1888, Re-
mark 130) but overlooked by Peano (1889). Landau himself (1966, Preface
for the Teacher) confesses to committing an error—detected by his teaching
assistant—in the first version of his lectures. In a more algebraic language,
the issue is clarified by Henkin (1960):

If we consider a unary algebra, that is, an algebraic structure N =
〈N ; 1, S〉 consisting of a ground set N together with a constant symbol
1 and a unary function S (it will automatically satisfy Axioms 1 and
2), then

• N satisfies the Axiom of Induction (Axiom 5) if and only if N
is generated by 1;

• N satisfies the Axiom of Induction (Axiom 5) together with
Axioms 3 and 4 if and only ifN is a free generated unary algebra
freely generated by element 1.

Landau implicitly (and Henkin explicitly) shows that addition and
—later in the book—multiplication can be defined by induction alone. But,
as we have just seen, the argument takes some work.
David Pierce makes an incisive comment:

Indeed, if one thinks that the recursive definitions of addition and
multiplication—

n+ 0 = n,

n+ (k + 1) = (n+ k) + 1;

n · 0 = 0,

n · (k + 1) = n · k + n

—are obviously justified by induction alone, then one may think the
same for exponentiation, with

n0 = 1

nk+1 = nk · n.
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However, while addition and multiplication are well-defined on Z/nZ
(which admits induction), exponentiation is not; rather, we have

(x, y) 7→ xy

(Z/nZ)∗ × Z/ϕ(n)Z → Z/nZ,

where (Z/nZ)∗, as usual, denotes the group of invertible elements of the
residue ring Z/nZ. Indeed, the recursive definition of exponentiation fails
in Z/3Z,

n n2 n3 n3 × n n4

2 1 2 1 2,

but holds in Z/6Z:

n n2 n3 n4 n5 n6 n7

1 1 1 1 1 1 1
2 4 2 4 2 4 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 1 5 1 5 1 5
6 6 6 6 6 6 6

The former is an exception rather than rule, as clarified by Don Zagier’s
theorem.

Theorem 3.1. (Don Zagier, 1996) The identities

a1 = a, ab+1 = ab × a (1)

hold on Z/nZ if and only if n ∈ {0, 1, 2, 6, 42, 1806}.

I share David Pierce’s (2009) indignation at the state of affairs:

Yet the confusion continues to be made, even in textbooks intended
for students of mathematics and computer science who ought to be
able to understand the distinction. Textbooks also perpetuate related
confusions, such as suggestions that induction and ‘strong’ induction
(or else the ‘well-ordering principle’) are logically equivalent, and that
either one is sufficient to axiomatize the natural numbers. [. . .]

This is one example to suggest that getting things straight may make
a pedagogical difference.

But I have to admit that I shared the widespread ignorance until David
Pierce brought my attention to the issue—despite the fact that, in a calculus
course that I took in the first year of my university studies, the lecturer
(Gleb Pavlovich Akilov) explicitly proved the existence of a function of
natural argument defined by a recursive scheme (see Akilov and Dyatlov,
1979).
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4 Induction and recursion

From a pedagogical point of view, recursion could be simpler than induction,
and for two different reasons.

Firstly, recursion goes back, to smaller numbers and simpler cases. Sec-
ondly, recursion is a calculation, which is psychologically easier for children
to handle than a proof. A childhood story from BB raises yet another
point:3 recursion could be more concrete than induction.

In our math circle we covered induction (domino analogy, proofs of
summation formulae such as

1 + · · ·+ n =

(
n+ 1

2

)
,

and varied other examples). I did passably well on the problems, but
still I did not understand what the induction is really for, until the
end-of-year competition. I failed to solve a single problem: arrange
all binary strings of length 10 around the circle so that two adjacent
differ in precisely one position (it is known as cyclic Gray code of
size 10). It was when I was told the solution that I felt that I finally
understood the induction. The missing element was probably the
fact that I did not realize that the statement proved by induction is
an honest mathematical statement that pertains to concrete numbers
like 10, and not only to x, y, n, m and 1996, among which only the
latter is a number, but so big and arbitrary that it could as well be
denoted by n.

One of many recursive rules (the so-called “binary-reflexive” algorithm)
for construction of a cyclic Gray code is obvious from the examples of codes
of sizes 1, 2, 3, 4 given in Figure 2. This particular recursive algorithm is
remarkable indeed for being “self-proving” (in the sense of Barry Mazur’s
(2007) concept of “theorems that prove themselves”).

5 Landau’s proof of commutativity of addition

Now we return to Landau and commutativity of addition.

Theorem 6 (Commutative Law of Addition)

x+ y = y + x.

Proof. Fix y, and let M be the set of all x for which the assertion
holds.

3BB was 11 or 12 years old at the time of the story. He is male, Russian, currently a
PhD student in pure mathematics.
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0 00 000 0000
1 01 001 0001

11 011 0011
10 010 0010

110 0110
111 0111
101 0101
100 0100

1100
1101
1111
1110
1010
1011
1001
1000

Figure 2.

(I) We have y+ 1 = y′ and furthermore, by the construction in the
proof of Theorem 4, 1 + y = y′, so that

1 + y = y + 1

and 1 belongs to M.

(II) If x belongs to M, then x+ y = y + x, therefore

(x+ y)′ = (y + x)′ = y + x′.

By the construction in the proof of Theorem 4, we have

x′ + y = (x+ y)′

hence
x′ + y = y + x′,

so that x′ belongs to M. The assertion therefore holds for all x.
q.e.d.

Notice that it follows from Landau’s proof that addition is defined and
commutative on any 1-generated unary algebra, in particular, on the algebra
shown on Figure 3.
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1 2 3 n n+ 1

n+m− 1

Figure 3. A unary algebra with commutative addition (with thanks to
David Pierce).

Landau’s book is characterised by a specific austere beauty of entirely
formal axiomatic development, dry, cut to the bone, streamlined. Not sur-
prisingly, it is claimed that logical austerity and precision were Landau’s
characteristic personal traits.4

Grundlagen der Analysis opens with two prefaces, one intended for the
student and the other for the teacher; we already quoted Preface for the
Teacher, it is a remarkable pedagogical document. The preface for the
student is very short and begins thus:

1. Please don’t read the preface for the teacher.

2. I will ask of you only the ability to read English and to think
logically—no high school mathematics, and certainly no higher
mathematics. [. . .]

3. Please forget everything you have learned in school; for you
haven’t learned it.

Please keep in mind at all times the corresponding portions of
your school curriculum; for you haven’t actually forgotten them.

4. The multiplication table will not occur in this book, not even
the theorem,

2× 2 = 4,

but I would recommend, as an exercise for Chap. I, section 4,
that you define

2 = 1 + 1,

4 = (((1 + 1) + 1) + 1),

and then prove the theorem.

4Asked for a testimony to the effect that Emmy Noether was a great woman math-
ematician, Landau famously said: “I can testify that she is a great mathematician, but
that she is a woman, I cannot swear.”
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Also, I would like to offer as an exercise for the reader to prove Theorem 5
from Landau’s book: associativity of addition of natural numbers. It is easy.
By the way, will the addition on the unary algebra of Figure 3 be associative?

Perhaps the reader would agree that little EHK and little AB had good
reasons to be confused.

6 Children may take their thoughts very seriously

And here comes a really precious point communicated to me, in different
words, by the two referees. I quote one of them:

That children find start unknown problems harder than result un-
known problems is well established (e.g., Riley et al., 1983) but at-
tributing it to a lack of understanding of commutativity does not
seem to be the answer: children show a grasp of commutativity in
some form before they typically succeed on these problems (Canobi,
2004).

What follows is based on my earlier conversations with EHK and AB:
EHK, in her own words, did know what commutativity was; she under-

stood that 3 apples and 2 apples was the same as 2 apples and 3 apples.
She simply was not told that the same principle was applicable in her prob-
lem, because her problem was not about real life apples, it was about some
entities obtained by counting one by one; an educated adult would say that
the problem was about abstract objects.

AB’s visualisation of subtraction as removal of objects, one by one, from
the top of a stack was not about a real life stack of books, say (to start with,
there were 100 of them—she distinctively remembers the concrete number
in an arithmetic problem). It was a visualisation of an abstract concept of
a stack (and exactly of the same stack as used in the computer science as
a formalisation of push-down, “first come, first go” storage). Hers was an
example of “inverse vision” in terminology of Bill Thurston (1994), visual
representation of an abstract construction. She wanted to try to remove the
books from the bottom of the stack, but was not sure whether she had to
apply to them normal expectations of behaviour of real time objects: it did
not matter for real life books where to be removed from, from the top or
from the bottom, but in the second case the stack would collapse, and the
stalk was important, it represented the essence of the counting algorithm.

Importantly, both EHK and AB emphasised a feeling of frustration they
had because of their inability to communicate their difficulty to adults. It
could be suggested, at least at a metaphorical level, that their problems were
rooted in them taking the first mental structures of mathematics growing in
their minds very seriously. And they do not make a representative sample—
after all, both got a PhD in mathematics later in their lives.
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7 “Named” numbers

I take the liberty to tell a story from my own life;5 I believe it is relevant
for the principal theme of the paper.

When, as a child, I was told by my teacher that I had to be careful with
“named” numbers and not to add apples and people, I remember asking
her why in that case we can divide apples by people:

10 apples : 5 people = 2 apples. (2)

Even worse: when we distribute 10 apples giving 2 apples to a person, we
have

10 apples : 2 apples = 5 people (3)

Where do “people” on the right hand side of the equation come from? Why
do “people” appear and not, say, “kids”? There were no “people” on the
left hand side of the operation! How do numbers on the left hand side know
the name of the number on the right hand side?

There were much deeper reasons for my discomfort. I had no bad feel-
ings about dividing 10 apples among 5 people, but I somehow felt that the
problem of deciding how many people would get apples if each was given 2
apples from the total of 10, was completely different. (My childhood expe-
rience is confirmed by experimental studies, cf. (Squire and Bryant, 2002).
I suggest to call operation (2) sharing and (3) dispensing or distribution.)

In the first problem you have a fixed data set: 10 apples and 5 people,
and you can easily visualize giving apples to the people, in rounds, one
apple to a person at a time, until no apples were left. But an attempt to
visualize the second problem in a similar way, as an orderly distribution
of apples to a queue of people, two apples to each person, necessitated
dealing with a potentially unlimited number of recipients. In horror I saw
an endless line of poor wretches, each stretching out his hand, begging for his
two apples. This was visualization gone astray. I was not in control of the
queue! But reciting numbers, like chants, while counting pairs of apples, had
a soothing, comforting influence on me and restored my shattered confidence
in arithmetic.6

5Call me AVB; I am male, Russian, have a PhD in Mathematics, teach mathematics
at a research-led university in Britain.

6To scare the reader into acceptance of the intrinsic difficulty of division, I refer to the
paper Division by three (2006) by Peter Doyle and John Conway. I quote their abstract:
“We prove without appeal to the Axiom of Choice that for any sets A and B, if there is a
one-to-one correspondence between 3×A and 3×B then there is a one-to-one correspon-
dence between A and B. The first such proof, due to Lindenbaum, was announced by
Lindenbaum and Tarski in 1926, and subsequently ‘lost’; Tarski published an alternative
proof in 1949. We argue that the proof presented here follows Lindenbaum’s original.”
Here, of course, 3 is a set of 3 elements, say, {0, 1, 2}. An exercise for the reader: prove
this in a näıve set theory with the Axiom of Choice.
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Figure 4. The First Law of Arithmetic: you do not add fruit and people.
Giuseppe Arcimboldo, Autumn. 1573. Musée du Louvre, Paris.

I did not get a satisfactory answer from my teacher and only much later
did I realize that the correct naming of the numbers should be

10 apples : 5 people = 2
apples
people

, 10 apples : 2
apples
people

= 5 people. (4)

It is a commonplace wisdom that the development of mathematical skills
in a student goes alongside the gradual expansion of the realm of numbers
with which he or she works, from natural numbers to integers, then to
rational, real, complex numbers:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

What is missing from this natural hierarchy is that already at the level of
elementary school arithmetic children are working in a much more sophis-
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ticated structure, a graded ring

Q[x1, x
−1
1 , . . . , xn, x

−1
n ].

of Laurent polynomials in n variables over Q, where symbols x1, . . . , xn
stand for the names of objects involved in the calculation: apples, persons,
etc. This explains why educational psychologists confidently claim that the
operations (1) and (2) have little in common (Squire and Bryant, 2002)—
indeed, operation (2) involves operands of much more complex nature.

Usually, only Laurent monomials are interpreted as having physical (or
real life) meaning. But the addition of heterogeneous quantities still makes
sense and is done componentwise: if you have a lunch bag with (2 apples +
1 orange), and another bag, with (1 apple + 1 orange), together they make

(2 apples + 1 orange) + (1 apple + 1 orange) = (3 apples + 2 oranges).

Notice that this gives a very intuitive and straightforward approach to vec-
tors.7 Of course, there is no need to teach Laurent polynomials to kids; but
it would not harm to teach them to teachers. I have an ally in François
Viéte who in 1591 wrote in his Introduction to the Analytic Art that

If one magnitude is divided by another, [the quotient] is heterogeneous
to the former [. . .] Much of the fogginess and obscurity of the old
analysts is due to their not paying attention to these [rules].

8 Digression into Turkish grammar

A logical difference between operations of sharing and dispensing is reflected
in the grammar of the Turkish language by presence of a special form of
numerals, distributive numerals.

What follows are accounts of David Pierce, Eren Mehmet Kıral and
Sevan Nişanyan. David Pierce reports:

Turkish has several systems of numerals, all based on the cardinals;
as well as a few numerical peculiarities. The cardinals begin “bir,
iki, üç, dört, beş, altı, . . . ” (one, two, three, . . . ) These answer
the question “Kaç?” (How many?) The ordinals take the suffix -
inci, adjusted for vowel harmony: “birinci, ikinci, üçüncü, dördüncü,
beşinci, altıncı, . . . ” (first, second, third, . . . ). These answer the

7By the way, this “lunch bag” approach to vectors allows a natural introduction of
duality and tensors: the total cost of a purchase of amounts g1, g2, g3 of some goods at
prices p1, p2, p3 is a “scalar product”-type expression

∑
gip

i. We see that the quantities
gi and pi could be of completely different nature. The standard treatment of scalar
(dot) product in undergraduate linear algebra usually conceals the fact that dot product
is a manifestation of duality of vector spaces and creates immense difficulties in the
subsequent study of tensor algebra.
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question “Kaçıncı?”. The distributives take the suffix -(ş)er: “birer,
ikişer, üçr, . . . ” Used singly, these mean “one each, two each” and so
on, as in “I want two fruits from each of these baskets”; they answer
the question “Kaçar?”.

Eren Mehmet Kıral continues:

When somebody is distributing some goods s/he might say “Beşer
beşer alın” (each one of you take five) or “İ kişer elma alın” (take
two apples each). I do not know if it is a grammatical rule (or if it is
important) but when the name of the object being distributed is not
mentioned then the distributive numeral is repeated as in the first
example.

The numeral may also be used in a non distributive problem. If
somebody is asking students (or soldiers) to make rows consisting of
7 people each then s/he might say “Yedişer yedişer dizilin.” (Get into
rows of seven)

I believe the repetition in these numerals exists to give the feeling
of distribution. Since in any distribution event you give more than
one time you say beşer beşer and indicate how many objects you are
giving to the first two people, and the rest is assumed to be the same.

In that context, a story told to me by one of my colleagues, ŞUE is
very interesting.8 His experience of arithmetic in his (Turkish) elementary
school, when he was about 8 or 9 years old, had a peculiar trouble spot:
he could factorise numbers up to 100 before he learnt the times table, so
he could instantly say that 42 factors as 6 × 7, but if asked, on a different
occasion, what is 6× 7, he could not answer. Also, he could not accept the
concept of division with remainder: if a teacher asked him how many 3s
go into 19 (expecting an answer: 6, and 1 is left over), little ŞUE was very
uncomfortable—he knew that 3 did not go into 19. ŞUE added:

But I did not pay attention to 19 being prime. I had the same problem
when I was asked how many 3s go into 16. It is the same thing:
no 3s go in 16. Simply because 3 is not a factor of 16. This is
perhaps because of distributive numerals I some how built up an
intuition of factorising, but perhaps for the same reason (because of
the intuition that distributive gave) I could not understand division
with remainder.

ŞUE came in peace with remainder only at the first year at university,
when the process of division with remainder was introduced as a formal
technique.

As we can see, ŞUE does not dismiss the suggestion that distributive
numerals of his mother tongue could have made it easier for him to form

8ŞUE is Turkish, male, undergraduate mathematics student.
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concept of divisibility and prime numbers (although he did not know the
term “prime number”) before he learned multiplication.

9 Fractions and inductive limits

In response to my call for personal stories about difficulties in studying
(early) mathematics AG sent me the following e-mail:9

When I was about 9 years old, I’ve first learned at school about frac-
tions, and understood them quite well, but I had difficulties in un-
derstanding the concept of fractions that were bigger than 1, because
you see we were thought that fractions are part of something, so I
could understand the concept of, for example 1/3 (you a take a piece
of something you divided in 3 equal pieces and you take one), but I
couldn’t understand what meant 4/3 (how can you take 4 pieces when
there are only 3?). Of course I get it in several days, but I remember
that I was baffled at first.

I am surprised to see how frequently such memories are related to subtle
play of hidden mathematical structures, like dance of shadows in a moonlit
garden; these shadows can both fascinate and scare an imaginative child.
As a child, I myself was puzzled by expressions like 5/4, but my worries were
resolved by pedagogical guidance: I was taught to think about fractions as
named numbers of special kind: quarter apples. Fractions like 5/4 are not
result of dividing 5 apples between 4 people, since this operation of division
is not yet defined; they come from making sufficient number of material ob-
jects of new kind, “quarter apples” and then counting five “quarter apples”.
AG was less fortunate:

The word for fraction in Romanian is fractie, and that was the ter-
minology used by my teacher and in textbooks. The word is used
frequently in common language to express a part of something big-
ger, like fraction is used in English (I think . . . ), so I think that it’s
very likely that my difficulty could be of linguistic nature, I can’t elim-
inate also the fact that actually that was how fractions were introduce
to us—pupils (like parts of an object) and only later the notion was
extended, and so maybe I had problems accommodating to the new
notion. Or maybe both reasons . . .

I was luckier: in Russian the word for “fraction” is reserved for arithmetic
and is not used in the everyday language.10 Also, I was clearly told to think
about simple fractions 1/n as “named numbers” of special kind. In effect,
when dealing with quarter apples, we are working in the additive semigroup
1
4N generated by 1

4 .

9AG is male, Romanian, a student of Computer Science.
10Unless you are a hunter and use the same word for lead shot pellets.
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What happens next is much more interesting and sophisticated: we have
to learn how to add half apples with quarter apples. This is done, of course,
by dividing each half in two quarters, which amounts to constructing a
homomorphism

1
2

N −→ 1
4

N.

Since both 1
2N and 1

4N are canonically isomorphic to N, we, being adults
now, can make a shortcut in notation and write this homomorhism simply
as

N −→ N, z 7→ 2× z.

In effect, we have a direct system

N k×−→ N, k = 2, 3, 4, . . .

—or, if you prefer less abstract notation—

1
n

N Id−→ 1
kn

N.

Then we do something outrageous: we take its inductive (or direct, which
is an equivalent term) limit. In the primary school, of course, taking the
inductive limit is called bringing fractions to a common denominator.

Here are formal definition of a direct set, direct system, direct (induc-
tive) limit: A directed set is a nonempty set A together with a reflexive
and transitive binary relation ≤ (that is, a preorder), with the additional
property that every pair of elements has an upper bound.

Notice that the directed set in our definition is the set N with the di-
visibility relation. It is not linearly ordered and has a pretty sophisticated
structure by itself!

Let (I,≤) be a directed set. Let {Ai | i ∈ I} be a family of objects
indexed by I and suppose we have a family of homomorphisms fij : Ai →
Aj for all i ≤ j with the following properties: fii is the identity in Ai,
fik = fjk ◦ fij for all i ≤ j ≤ k. Then the pair (Ai, fij) is called a direct
system over I.

In our case, the direct system is formed by semigroups 1
kN, k ∈ N with

natural embeddings

1
n

N→ 1
m

N if n divides m.

The underlying set of the direct (inductive) limit, A, of the direct sys-
tem (Ai, fij) is defined as the disjoint union of the Ai’s modulo a certain
equivalence relation ∼:

A =
⊔
Ai/ ∼
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Here, if xi is in Ai and xj is in Aj , xi ∼ xj if there is some k in I such that
fik(xi) = fjk(xj).

The sum of xi ∈ Ai and xj ∈ Aj is defined as the equivalence class of
fik(xi) + fjk(xj) for some k such that i ≤ k and j ≤ k.

The result, of course, is the additive semigroup of positive rational num-
bers Q+. Only then we define multiplication on Q+. I leave a category
theoretical construction of multiplication as an exercise to the reader. It is
much helped by the fact that endomorphisms of the additive semigroup Q+

are invertible and form a group (the multiplicative group of positive ratio-
nal numbers Q×) which acts on Q+ simply transitively: for every non-zero
r, s ∈ Q+ there exists a unique q ∈ Q× such that s = q · r. And here is a
story from BC which illustrates this point:11

I could not understand the “invert and multiply” rule for dividing
fractions. I could obey the rule, but why was multiplying by 4/3 the
same as dividing by 3/4?

My teachers could not explain, but I was used to that. I couldn’t
work it out for myself either, which was less usual.

Finally I asked my father, who was an accountant. He said: if you
divide everything into halves, you have twice as many things. Sud-
denly not just fractions but the whole of algebra made sense for the
first time.

10 Palindromic decimals and palindromic polynomials

My next case study is based on conversations with an 8 year old boy, DW,
in May 2007. DW’s parents sent me a file of DW’s book. It included the
following paragraphs, reproduced here verbatim:

What’s weird about 1, 11, 111, 1111 etc when you square then?

12 = 1. 112 = 121. Keep on doing this with the other numbers. (If
necessary use a calculator).

Solutions see page it counts up e.g. 11111112 = 1234567654321

But when you have 1, 111, 111, 1112 the answer is different. Figuring
out (or using the calculator) when are the next square numbers in
the pattern after 11111111112?

Solutions see page 1234567900987654321, 123456790120987654321,
123456790123430987654321, 1234567901234320987654321
and 123456790123454320987654321!

Do you notice a pattern?

11BC was 10 years old. He is male, a non-English Western European.
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I wrote to DW:

Indeed, there is something weird. I believe you have figured out that

1× 1 = 1

11× 11 = 121

111× 111 = 12321

1111× 1111 = 1234321

11111× 11111 = 123454321

111111× 111111 = 12345654321

1111111× 1111111 = 1234567654321

11111111× 11111111 = 123456787654321

111111111× 111111111 = 12345678987654321

There is a wonderful palindromic pattern in the results. But mathe-
matics is interested not so much in beautiful patterns but in reasons
why the patterns cannot be extended without loss of their beauty. In
our case, the pattern breaks at the next step (judging by your book,
you have already noticed that):

1111111111× 1111111111 = 1234567900987654321

The result is no longer symmetric. Why? What is the difference from
the previous 9 squares? Can you give any suggestions?

I had some brief e-mail exchanges with DW which suggested that he might
have an explanation, but could not clearly express himself. Our discussion
continued when he visited me (with his mother) in Manchester on 8 May
2007.

I wrote on the whiteboard in my office (the following images are pho-
tographs of actual writing on the board)
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and asked DW whether the symmetric pattern of results continued indefi-
nitely. DW instantly answered “No” and also instantly wrote on the board,
apparently from his memory:

“Good,” said I, “but let us try to figure out why this is happening”, and
wrote on the board:

“Yes,” said DW, “this is column multiplication”—“And what are the
sums of columns’?” —“1, 2, 3, 4, 3, 2, 1,” dictated DW to me, and I wrote
down the result. “Will the symmetric pattern continue indefinitely?”, I
asked. “No,” was DW’s answer, “when there are 10 1’s in a column, 1 is
added on the left and there is no symmetry.”—“Yes,” said I, “carries break
the symmetry. But let us look at another example,” and I wrote:

DW was intrigued and made a couple of experiments (and it appeared
from his behaviour that he was using mostly mental arithmetic, writing
down the result, term by term, with pauses):
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Finally, he said with obvious enthusiasm: “Yes, it is the same pattern!”—
“Wonderful, ” I answered, “let us see why this is happening. I’ll give you
a hint: multiplication of polynomials can be written as column multiplica-
tion”, and started to write:

DW did not let me finish, grabbed the marker from my hand and insisted
on doing it himself:

He stopped after he barely started the second line and said very firmly:
“Yes, it is like with numbers”—“Well,” I said, “but will the pattern break
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down or will continue forever?” That was the first time when DW fell
in deep thought (and I was a bit uncomfortable about the degree of his
concentration and retraction from the real world). This was also the first
time when his response was not instantaneous—perhaps, whole 20 seconds
passed in silence. Then he suddenly smiled happily and answered: “No,
it will not break down!”—“Why?” I inquired. “Because when you add
polynomials, the coefficients just add up, there are no carries.” At that
point I decided to stop the session on the pretext that it was late and the
boy was perhaps tired, but, to round up the discussion, made a general
comment: “You know, in mathematics polynomials are sometimes used
to explain what is happening with numbers”. The last word, however,
belonged to DW: “Yes, 10 is x.”

11 DW: a discussion

11.1 The so-called “able” children.
DW is a classical example of what is usually called a “mathematically able
child”. He mastered, more or less on his own, some mathematical routines—
multiplication of decimals and polynomials—which are normally taught to
children at much later age. He also showed instinctive interest in detect-
ing beautiful patterns in behaviour of numbers, and, which is even more
important, in limits of applicability of patterns, in their breaking points.

DW understands what generalisation is and, moreover, loves making
quick, I would say recklessly quick generalisations. Krutetskii (1976) lists
this trait among characteristic traits of “mathematically able” children:
very frequently, they are children, who, after solving just one problem, al-
ready know how to solve any problem of the same type.

But let us return to the principal theme of the present paper: hid-
den structures of elementary mathematics. In our conversation, DW was
shown—I emphasise, for the first time in his life—a beautiful but hidden
connection between decimals and polynomials—and was able to see it !

In our little exercise, DW advanced (a tiny step) in conceptual under-
standing of mathematics: he had seen an example of how one mathematical
structure (polynomials) may hide inside another mathematical structure
(decimals).

My final comment is that although DW made a small, but important step
towards deeper understanding of mathematics, this step is not necessarily
visible in the standard mathematics education framework. It is unlikely that
a school assignment will detect him making this small step. Procedurally,
in this small exercise DW learned next to nothing—he multiplied numbers
and polynomials before, he will multiply them with the same speed after.

One should not think, however, that the “procedural” aspect of math-
ematics is of no importance. DW’s ability to do this tiny bit of “concep-
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tual” mathematics would be impossible without him mastering the standard
routines (in this case, column multiplication of decimals and addition and
multiplication of polynomials).

11.2 Decimals and polynomials: an epiphany
DW’s words “10 is x” are a formulation of analogy between decimals and
polynomials which is not frequently emphasised in schools but, when dis-
covered by children on their own, is experienced as an epiphany. These
expression is taken from another childhood story, by LW.12

When I was in the fourth grade (about 9 years old), we learned long
division. I had enormous difficulty learning the method, though I
could divide 3- and 4-digit numbers by 1- to 2-digit numbers in my
head. I don’t recall exactly how I did the divisions in my head, though
I suspect that the method was similar to long division. I recall that it
was broadly based on “seeing how much I needed to add to the result
to move on.” However, I couldn’t seem to remember long division,
despite being able to follow a list of instructions on homework. My
homework on long division took hours to finish. I think the issue
was that my teacher and parents never explained why long division
actually worked, so it seemed like a disconnected list of steps that
had little relation to one another. On a quiz, my teacher thought I
had cheated, since I had written no work on any of the problems.

I only became able to do long division in high school when I learned
how to do long division with polynomials. At that time, the teacher
went to great pains to explain why it worked. While doing a home-
work, I had an epiphany: long division for polynomials was a close
cousin of long division for numbers. Suddenly I could do long division
of numbers.

I now take pains when teaching calculus to try and explain why for-
mulas are true whenever possible. This has lead to mixed reactions on
my evaluations, with some students saying that they enjoy knowing
why the formulas are true and others saying that they have enough
trouble learning formulas in the first place without having to also
learn why they’re true. For me, the two are deeply connected. If I
don’t know why something is true (at least in broad outline), I find
it significantly harder to remember.

LW’s story is an evidence in support of an observation made by Krutet-
skii (1976): “mathematically inclined children” may appear to be slow be-
cause they are frequently trying to solve a more general problem than the

12LW was 9 years at the time of his story, he is male, learned mathematics in American
English (his native tongue), currently is a second year student in a PhD program in pure
mathematics.
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one given and understand the underlying reasons for a rule they are told to
apply unquestionably.

11.3 Cohomology
But what was the mathematical object that DW dealt with? It is, of course,
carry in the addition of decimals, one of the extreme cases when the decep-
tive simplicity of elementary school arithmetic hides a very sophisticated
structure.

In Molière’s Le Bourgeois Gentilhomme, Monsieur Jourdain was sur-
prised to learn that he had been speaking prose all his life. I was recently
reminded that, starting from my elementary school and then all my life, I
was calculating 2-cocycles.

Indeed, a carry in elementary arithmetic, a digit that is transferred from
one column of digits to another column of more significant digits during
addition of two decimals, is defined by the rule

c(a, b) =
{

1 if a+ b > 9
0 otherwise .

One can easily check that this is a 2-cocycle from Z/10Z to Z and is respon-
sible for the extension of additive groups

0 −→ 10Z −→ Z −→ Z/10Z −→ 0.

DW discovered (without knowing the words “2-cocycle” and “cohomology”)
that carry is doing what cocycles frequently do: they are responsible for
break of symmetry.

12 Conclusions

I can easily continue a list of my case studies. Many of them can be found
in my forthcoming book (Borovik, 2010). All my examples lead to the same
conclusions:

12.1 Even basic elementary mathematics is immensely rich.
I hope that this thesis is self-evident from the examples considered in the
paper. For example, elementary school mathematics actually uses inductive
limits and cohomology.

Although I am trying to escape from giving any advice on methods and
approaches of mathematics instruction, I cannot avoid making a few general
remarks.

First of all, glossing over difficulties presented by hidden structures may
seriously imperil students’ progress.

Next, it is desirable (but perhaps not always realistic) that teachers
are aware about the hidden structures and are able to guide pupils around
dangerous spots—perhaps without needlessly alerting them every time.
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12.2 Hidden structures: obstacles or opportunities?
Another preliminary conclusion of this study is that the sensitivity to the
presence of “hidden” structures appears to be an important component of
mathematical ability in so-called “mathematically gifted” children. Spe-
cial forms of this observation can be found already in the classical study
by Vadim Krutetskii (1976) who pinpoints numerous instances of children
using “symmetry” considerations or intentionally resorting to more general
arguments.

And this is point where a reminder about non-representativity of the
sample of respondents is necessary. One of the respondents (BB, quoted in
Section 4) formulated this caveat very explicitly:

I would like to point out that the stories are provided by the people
who are [. . .] atypical in terms of mathematical thinking and learn-
ing. Most people who have responded have not only gone to deal with
unusually abstract concepts in their career, but actually do mathe-
matics. So, the examples here might represent not so much the major
difficulties that need to be overcome (as in finding the correct way
of thinking of division apples by apples) before an understanding can
be reached, but the signs that the understanding has already been
reached, and difficulty is purely semantic, i.e., how to express it.

Perhaps, stories told in this paper represented difficulties for the teacher
and missed opportunities for the child.

12.3 Intrinsic logical structures of human languages
We had a chance to see in several stories that children’s perception of math-
ematics can be affected by logical and mathematical structures (such as
systems of numerals) of the language of mathematics instruction and their
mother tongue. Intrinsic structures of natural languages are engaged in a
delicate interplay with hidden structures of mathematics.

For me personally, this is a serious practical issue. Every autumn, I teach
a foundation year (that is, zero level) mathematics course to a large class
of students which includes 70 foreign students from countries ranging from
Afghanistan to Zambia. Students in the course come from a wide variety
of socioeconomic, cultural, educational and linguistic backgrounds. But
what matters in the context of the present paper are invisible differences in
the logical structure of my students’ mother tongues which may have huge
impact on perception of mathematics. For example, the connective “or” is
strictly exclusive in Chinese: “one or another but not both”, while in English
“or” is mostly inclusive: “one or another or perhaps both”. Meanwhile, in
mathematics “or” is always inclusive and corresponds to the expression
“and/or” of bureaucratic slang. In Croatian, there are two connectives
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“and”: one parallel, to link verbs for actions executed simultaneously, and
another consecutive.13

But it is as soon as you approach definite and indefinite articles that
you get in a real linguistic quagmire. In words of my correspondent VČ:14

[In Croatian, there are] no articles. There are many words that can
“serve” as indefinite articles (neki=some, for example), but not no
particularly suitable word to serve as definite article (except adjective
odredeni = definite, I guess). Many times when speaking mathemat-
ics, I (in desperation) used English articles to convey meaning (eg.
Mislǐs da si našao a metodu ili the metodu za rješavanje problema
tog tipa? = You mean you found a method or the method for solving
problems of that type?

Psycholinguistic aspects of learning mathematics are a deserving area of
further study.
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